簡易檢索 / 詳目顯示

研究生: 黃鶉亦
Huang, Chun-Yi
論文名稱: LAZ1021鎂鋰合金延脆轉換特性之應變速率及織構效應探討
Effects of Strain Rate and Texture on Ductile-to- Brittle Transition Behavior of LAZ1021 Mg-Li Alloy
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 鎂鋰合金雙相組織應變速率效應延-脆轉換織構
外文關鍵詞: Mg-Li alloy, dual-phase microstructure, strain rate effect, ductile-to-brittle transition, texture
相關次數: 點閱:57下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金相較於一般輕金屬具有質輕、比強度高、制振性佳及電磁波遮蔽效應等優點,廣泛被應用於交通工具結構件及電子產品外殼。鎂鋰合金具有比一般鎂合金更低之密度及延展性優良等特點,因此深具輕量化與溫加工性佳之潛力。本研究針對具有HCP富鎂α相與BCC富鋰β相之雙相Mg-10Li-2Al-1Zn鎂鋰合金擠型板材自-25ºC至250ºC進行拉伸試驗,並改變拉伸應變速率(1.67 × 10 -3 s -1及1.67 × 10 - 4 s -1),亦分別與擠型方向呈0°、45°及90°進行拉伸試驗,藉以探討此雙相LAZ1021-F合金在改變溫度、應變速率與拉伸方向之拉伸性質變化。
    實驗結果發現,降伏強度(YS)、抗拉強度(UTS)均隨溫度上升而下降;總延伸率(TE)則在100ºC後,均提高至35%以上,且在0ºC~100ºC區間內存在延-脆轉換溫度(DBTT)。在改變不同拉伸應變速率情況下,LAZ1021鎂鋰合金仍具有延-脆轉換特性,值得注意的是當拉伸應變速率降低,延-脆轉換溫度亦隨之降低。由XRD與Pole figure顯示LAZ1021具有強烈的擠型織構且α相HCP底面平行擠型方向排列,但在0°、45°及90°拉伸之YS、UTS均約略一致,而UE與TE具有異向性,延性在0°拉伸時最佳且改變拉伸方向後均有延-脆轉換行為。由光學顯微鏡在破斷面觀察到裂縫起始於α相與α/β相界,且隨溫度升高裂縫孔洞化現象越趨顯著。而延-脆轉換行為推論應為α相與β相兩相綜合結果,由β相阻擋裂紋能力所主導,α相扮演提供起始裂紋角色。

    Magnesium alloys have attractive properties such as low density, high specific strength and elastic modulus, good damping ability and good absorption of electromagnetic waves. Mg-Li alloys’ unique combination of low density and extraordinary ductility have interested engineers and scientists since the 1940’s, and these alloys are drawing much attention from its lightweight and good formability characteristics in recent years.
    Dual-phase as-extruded LAZ1021 alloy (Mg-10.3Li-2.4Al-0.7Zn), which is consist of HCP α-phase and BCC β-phase, was deformed under tensile stress with strain rate 1.67 × 10 -3 s -1 and 1.67 × 10 - 4 s -1 at the temperature range from -25℃ to 250℃. To investigate the tensile anisotropy and dominate deformation mechanism, tensile samples is deformed with the tensile axis forming angles of 0°,45° and 90° to the extrusion direction. The results reveal that ultimate stress (UTS) and yield stress (YS) decrease with increasing temperature, and total elongation (TE) reach 35% above 100℃. With different strain rates and tensile directions, LAZ1021 has a intrinsic ductile-to-brittle transition characteristic.
    While the tensile test was carried out with lower strain rate, the ductility obviously increased at 25℃ and 50℃, and therefore the ductile-to-brittle transition temperature generally decreases by 25℃. The XRD results show that LAZ1021 has a strong texture which the basal planes of α-phase parallel the extrusion direction. The tensile testing with different tensile directions results that YS and UTS have the same tendency, and UE and TE have anisotropic characteristic. The fracture microstructures reveal that initial cracks occurred within the α-phase and α/β-phase interfaces. Ductile-to-brittle transition is dominated by the resistance of β-phase to crack propagation from α-phase.

    摘要 I Abstract II 致謝 IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2.1 鎂合金分類記號 2 2.2 合金元素添加效應 2 2.3 鎂鋰合金背景與現況 4 2.4 晶體變形機制 4 2.4.1 HCP結構 4 2.4.2 BCC結構 5 2.5 延脆轉換 6 2.6 織構效應 7 第三章 實驗方法 11 3.1 實驗材料 11 3.2 微硬度測試 11 3.3 相組成與微觀組織解析 11 3.4 XRD分析 11 3.5 拉伸試驗 12 第四章 實驗結果 14 4.1 LAZ1021-F之微觀組織、硬度與XRD分析 14 4.2 拉伸試驗 15 4.2.1 不同溫度之拉伸性質 15 4.2.2 不同應變速率之拉伸性質 15 4.3 拉伸變形顯微組織觀察 16 4.3.1 拉伸破斷處金相 16 4.3.2 拉伸破斷面形貌觀察 17 4.4 不同拉伸方向之拉伸性質 18 第五章 討論 42 5.1 低應變速率特性與應用 42 5.2 破壞產生與成長機制 42 5.3 延脆轉換行為 43 5.4 應力-應變曲線抖動之解析 44 5.5 織構與α相分佈形態對拉伸性質之影響 45 5.6 拉伸性質之應變速率效應 46 第六章 結論 58 參考文獻 59 自述 63 表目錄 表 2–1 鎂鋰合金近期運用[21] 9 表 3–1 LAZ1021-F 合金之成分組成 13 表 4–1 LAZ1021-F合金之微硬度(Hv) 19 圖目錄 圖 2–1 Mg-Li合金二元相圖 [9] 10 圖 3–1 拉伸試片取樣及尺寸示意圖 13 圖 4–1 LAZ1021-F之OM金相圖 20 圖 4–2 LAZ1021-F之ND面: (a)與(b)之α相均可觀察到DRX 21 圖 4–3 粉末繞射圖 22 圖 4–4 LAZ1021-F各面之XRD圖 23 圖 4–5 LAZ1021-F織構示意圖[34] 24 圖 4–6 LAZ1021-F之極圖 25 圖 4–7 應變速率1.67 × 10 - 3 s - 1之應力-應變曲線圖 26 圖 4–8 應變速率1.67 × 10 - 3 s - 1之拉伸性質: (a)YS;(b)UTS 27 圖 4–9 應變速率1.67 × 10 - 3 s - 1之拉伸性質: (a)UE;(b)TE 28 圖 4–10 應變速率1.67 × 10 - 4 s - 1之應力-應變曲線圖 29 圖 4–11 初始應變速率對拉伸強度的影響: (a)YS;(b)UTS 30 圖 4–12 初始應變速率對拉伸延性的影響: (a)UE;(b)TE 31 圖 4–13 應變速率為1.67 × 10 - 3 s - 1之各拉伸溫度破斷面金相圖 32 圖 4–14 應變速率為1.67 × 10 - 4 s - 1之各拉伸溫度破斷面金相圖 33 圖 4–15 變形雙晶 34 圖 4–16 應變速率為1.67 × 10 - 3 s – 1之拉伸破斷面SEM照片 35 圖 4–17 應變速率為1.67 × 10 - 4 s – 1之拉伸破斷SEM照片 36 圖 4–18 90°拉伸之應力-應變曲線圖( ε =1.67 × 10 - 3 s – 1) 37 圖 4–19 分別與擠型方向夾0°、45°和90°之拉伸強度 38 圖 4–20 分別與擠型方向夾0°、45°和90°之拉伸延性 39 圖 4–21 與擠形方向夾90°之各溫度之拉伸破斷金相圖(ND面): 40 圖 4–22 45°拉伸之應力-應變曲線圖( ε =1.67 × 10 - 3 s – 1) 41 圖 5–1 ε =1.67 × 10 - 4 s – 1下不同應變量之強度 48 圖 5–2 拉伸過程中斷之金相觀察(50℃ & ε =1.67 × 10 - 4 s -1) 49 圖 5–3 150℃各應變量下之金相(ε =1.67 × 10 - 4 s -1) 50 圖 5–4 不同應變量之金相圖: (a)RT;(b)100℃ 51 圖 5–5 各溫度下之裂縫特徵與TE之關係圖: 52 圖 5–6 Strain rate- Stress關係圖 53 圖 5–7 拉伸前後XRD分析 54 圖 5–8 不同應變速率下之YS與UTS 55 圖 5–9 應變速度敏感指數m 56 圖 5–10 不同應變速率下之TE 57

    [1] 林尚秋,『退火溫度Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究』,國立中興大學材料科學與工程學研究所碩士論文,2008年7月。
    [2] 吳泓渝、邱垂泓,『工業材料雜誌』,253期,2008年1月,170~176頁。
    [3] A. Alamo, and D Banchik, “Precipitation phenomena in the Mg-31at%Li-1at%Al alloy”, J. Mater. Sci., Vol.15 , 1980 , pp.222-229.
    [4] J. Clark, and L Sturkey, “The age-hardening mechanism in Mg-Li-Zn alloys”, J. Inst. Metals, Vol.56, 1957, pp.272-276.
    [5] 洪浩恩,『Mg-10Li-2Al-1Zn鎂合金擠型材於248K~523K 之拉伸性質及延脆轉換特性探討』,國立成功大學材料科學與工程學系碩士論文,2008年7月。
    [6] H. Takuda, and H. Matsusaka, “Tensile properties of a few Mg-Li-Zn alloy thin sheets”, J. Mater. Sci., Vol.37, 2002, pp.51-57.
    [7] D.K. Xu, “The relationship between macro-fracture modes and roles of different deformation mechanisms for the as-extruded Mg-Zn-Zr alloy”, Scripta Mater., Vol.58, No. 12, 2008, pp. 1098-1101.
    [8] M. Avedesian, and H. Baker, “ASM Specialty Handbook-Magnesium and Magnesium Alloy”, ASM International, United States of America, 1999, pp.13-43.
    [9] T. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, “Binary alloy phase diagrams”, ASM International, United States of America, 2001, pp.2445.
    [10] Z. Trojanova, Z. Drozd, P. Lukac, and S. Kudela, “Deformation processes in Mg-Li-Al base composites”, Mater. Sci. Forum, Vol.419-422, 2003, pp.817-822.
    [11] G. Song, and M. Kral, “Characterization of cast Mg-Li-Ca alloys”, Mater. Charac., Vol.54, 2005, pp.279-286.
    [12] H. Wu, Z. Gao, J. Lin, and C. Chiu, “Effects of minor scandium addition on the properties of Mg-Li-Al-Zn alloy”, J. Alloys Compd., Vol.474, 2009, pp.158-163.
    [13] 張永耀,『金屬熔銲學』,徐氏基金會,臺北,1976年,134~170頁。
    [14] Z. Drozd, and Z. Trojanova, “Deformation behavior of Mg-Li-Al alloys”, J. Alloys Compd., Vol.378, 2004, pp.192-195.
    [15] C. H. Caceres, C. J. Davidson, J. R. Griffiths and C.L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325, 2002, pp.344-355.
    [16] C. Shaw and H. jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A226-228, 1997, pp.856-860.
    [17] G.S., Mark Staiger, and Milo Kral, “Some new characteristics of the strengthening phase in beta-phase magnesium-lithium alloys containing aluminum and beryllium”, Materials Science and Engineering A371, 2004, pp.371-376.
    [18] “Magnesium Alloys”, Metals Handbook 9th Edition, ASM, Vol.6, 1985, pp.425-434.
    [19] 賴耿陽,『非金屬材料』,復漢出版社,新竹,1998年,第174~191頁。
    [20] R. Ninoiya, and K. Miyake, “A study of superlight and superplastic Mg-Li based alloy”, Journal of Japan Institute of Light Metals, Vol.51, 2001, pp.509-513.
    [21] J. Y. Wang, W. P. Hong, P. C. Hsu, and L. Tan, “Microstructures and mechanical behavior of processed Mg-Li-Zn alloy”, Mater. Sci. Forum, Vol.419-422, 2003, pp.165-170.
    [22] R. Honeycombe, “The plastic deformation of metals”, Edward Arnold, Great Britain, 1984, pp.113-447.
    [23] E. Schmid, and W. Boas, “Kristallplastizität”, Springer, 1935.
    [24] Shinji Ando, and Hideki Tonda, “Non-basal slip in Magnesium-Lithium alloy single crystals”, Japan Institute of Metals, Vol.41, 2000, pp.1181-1191.
    [25] S. R. Agnew, J. A. Horton, and M. H. Yoo, “Transmission electron microscopy investigation of <c + a> dislocations in Mg and α-solid solution Mg-Li alloys”, Metall. Mater. Trans. A, Vol.33A, 2002, pp.851-858.
    [26] R. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd Edition, PWS Publishing Company, pp.142-146.
    [27] C. Brooks, “Heat treatment, structures and properties of nonferrous alloy”, ASM, United States of America, 1984, pp.59- 69.
    [28] William D. Callister, Jr., “Fundamentals of Materials Science and Engineering”, Second Edition, pp.284-286.
    [29] G. Sambasiva, and Y. Prasad, “Effect of texture and grain size on the fracture behaviour of hot rolled Mg, Mg-12.5%Li and Mg-5%Tl alloys”, Res. Mechanica, Vol.9, 1983 , pp.41-61.
    [30] H. Saka and G. Taylor, “Plasticity of a BCC Li-Mg Alloy”, The Metall. Soc. AIME, 1981, pp.13-15.
    [31] A. M. Russell, L. S. Chumbley, V. B. Gantovnik, K. Xu, Y. Tian, and F. C. Laabs, “Anomalously high impact fracture toughness in BCC Mg-Li between 4.2 K and 77 K”, Scripta Mater., Vol.39, 1998, pp.1663-1667.
    [32] 洪浩恩,『Mg-10Li-2Al-1Zn鎂合金擠型材於248K~523K 之拉伸性質及延脆轉換特性探討』,國立成功大學材料科學與工程學系碩士論文,2008年7月,第28頁。
    [33] 同上,第23頁。
    [34] 同上,第53頁。
    [35] 葉哲政,『液壓成形技術之應用』,金屬工業研究發展中心,2002年。
    [36] C. Wang, Y. Xu, and E. Han, “Serrated flow and abnormal strain rate sensitivity of a magnesium-lithium alloy”, Materials letters, Vol. 60, 2006, pp. 2941-2944.
    [37] R. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd Edition, PWS Publishing Company, pp.294-298.

    下載圖示 校內:2013-08-08公開
    校外:2013-08-08公開
    QR CODE