簡易檢索 / 詳目顯示

研究生: 郭柏宏
Kuo, Po-Hong
論文名稱: 膠漿與熱鑄性瀝青混凝土之工程性質
Engineering Properties of Asphalt Mastic and Guss
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 207
中文關鍵詞: Guss熱鑄性瀝青混凝土千里達湖瀝青黏度試驗質流試驗疲勞裂縫
外文關鍵詞: Guss, Gussasphalt, Trinidad Lake Asphalt, Viscosity Test, Rheological Test, Fatigue Crack
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱鑄性瀝青混凝土(Gussasphalt,簡稱 Guss)主要應用於鋼床鈑橋樑,以高流動性及零孔隙為設計目標保護鋼床鈑。Guss的強度主要與瀝青膠漿有關,本研究首先針對Guss膠漿探討基本性質,再於試驗室拌和模擬老化,進行Guss基本工程性質試驗以及應變控制疲勞試驗,以分析高溫車轍、定義疲勞壽命之結果,供作Guss之鋪面材料與施工規範參考。
    Guss膠漿研究結果顯示,千里達湖瀝青(T.L.A.)和石粉含量的增加以及拌和時間造成的老化都會使膠漿的勁度上升,但老化對相位角造成的影響比T.L.A.和石粉含量對相位角的影響明顯;使用不同瀝青作為黏結料拌和T.L.A.後在膠漿的性質也有所差異。Guss瀝青混凝土研究結果顯示,溫度及瀝青含量差異對於Guss的流動性敏感性相當高,瀝青含量對於動態穩定值影響較為明顯;由疲勞試驗可得知,Guss之疲勞壽命高於傳統瀝青混凝土;在定義疲勞壽命方面,應用傳統疲勞壽命、勁度變化曲線等定義,所得之疲勞壽命皆有一致性。工程實際案例以國道6號國姓橋作為分析探討的對象,對國內在 Guss 材料性質、配比設計與施工方面的技術提出解釋說明,回饋現有 Guss 之施工規範。

    Gussasphalt (Guss) is mainly used in the steel deck bridge, of which designed goals are the high fluidity and zero porosity to protect steel deck . The strength of Guss is mainly related to asphalt mastic. Therefore, this study firstly focused on Guss paste to investigate its basic properties, and then stimulated the aging effect on its mixing in the lab in order to implement the basic engineering property testing and strain-controlled fatigue testing for Guss. In addition, the results of the high-temperature rutting analysis and the fatigue life definition could be provided as the reference for the pavement material and construction specifications for Guss.
    The research results of Guss paste indicated that the increase of Trinidad Lake Asphalt (T.L.A.) and aggregate content and the aging effect resulted from the mixing time would increase the stiffness of mastic; however, the aging effect on the phase angle was more significant than T.L.A. and aggregate content to the phase angle. Moreover, different types of asphalt were applied to be the binding materials to mix with T.L.A., and there’re several differences existed in the paste properties. The study results of Gussasphalt showed that differences in temperature and asphalt content had high sensibility to Guss fluidity, and the asphalt content had a significant effect on the dynamic stability. Furthermore, the results of fatigue test showed that Guss’s fatigue life was longer than traditional asphalt mixtures. In terms of defining fatigue life, it should be based on the definition of traditional fatigue life and stiffness change curve to obtain a consistent fatigue life. The actual engineering case, Guoxing Bridge of National Freeway No. 6, is adopted as the subject for analysis and investigation, in order to propose the explanation and introduction to domestic Guss material property, mix design and engineering technology, as references to the engineering specifications of current Guss construction.

    目錄 目錄 I 表目錄 VIII 圖目錄 X 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-4 1.4 研究範圍 1-5 第二章 文獻回顧 2-1 2.1 瀝青膠漿 2-1 2.1.1 填充料 2-1 2.1.2 瀝青膠漿特性 2-2 2.2 千里達湖瀝青 2-4 2.3 熱鑄性瀝青混凝土 2-7 2.3.1 Guss之瀝青材料 2-7 2.3.2 Guss之特性與優點 2-8 2.4 正交異向性剛床鈑橋 2-10 2.5 瀝青質流行為 2-11 2.5.1 瀝青黏結料質流性質 2-11 2.5.2 瀝青質流參數 2-12 2.6 疲勞裂縫行為與試驗方法 2-17 2.6.1 動態力學分析 2-17 2.6.2 應變率單軸拉伸試驗 2-18 2.6.3 應力鬆弛試驗 2-19 2.6.4 應變控制疲勞試驗 2-20 2.6.5 應變控制之週期性載重試驗 2-21 2.6.6 破壞能門檻值 2-23 2.7 疲勞裂縫成長模式 2-24 2.7.1 疲勞裂縫起始點 2-24 2.7.2 疲勞壽命 2-24 2.7.3 消散能與疲勞壽命 2-25 第三章 研究計畫 3-1 3.1 試驗流程 3-1 3.2 試驗材料 3-7 3.2.1瀝青黏結料 3-7 3.2.2 填充料 3-7 3.2.3 熱鑄性瀝青混凝土(Guss) 3-8 3.3 試驗方法與設備 3-9 3.3.1 軟化點試驗 3-9 3.3.2 黏度試驗 3-9 3.3.3 動剪質流儀 3-9 3.3.4 熱鑄性瀝青混凝土Lueer流動性試驗 3-11 3.3.5 熱鑄性瀝青混凝土貫入試驗 3-15 3.3.6 熱鑄性瀝青混凝土彎曲試驗 3-20 3.3.7 熱鑄性瀝青混凝土疲勞試驗 3-23 3.3.7.1 試驗儀器 3-23 3.3.7.2 熱鑄性瀝青混凝土鬆弛模數試驗 3-25 3.3.7.3 熱鑄性瀝青混凝土控制應變率試驗 3-25 3.3.7.4 應變振幅、載重頻率之疲勞試驗 3-25 第四章 熱鑄性瀝青混凝土膠漿性質分析 4-1 4.1 熱鑄性瀝青混凝土黏結料之物理特性 4-1 4.2 黏滯度試驗 4-2 4.2.1 基底料之黏滯度 4-3 4.2.2 瀝青膠漿之黏滯度 4-4 4.2.3 石粉膠漿之黏滯度 4-10 4.2.4 瀝青膠漿老化對黏滯度之影響 4-13 4.2.3 石粉膠漿之黏滯度 4-10 4.3 軟化點分析 4-18 4.3.1 基底料之軟化點 4-18 4.3.2 瀝青膠漿之軟化點 4-18 4.3.3 石粉膠漿之軟化點 4-19 4.4 質流試驗 4-20 4.4.1 瀝青基底料之質流分析 4-20 4.4.2 瀝青膠漿之質流分析 4-24 4.4.3 石粉膠漿之質流分析 4-30 4.4.4 瀝青膠漿老化之質流性質 4-35 第五章 熱鑄性瀝青混凝土工程性質分析 5-1 5.1 熱鑄性瀝青混凝土配合設計 5-1 5.1.1 拌和材料 5-1 5.1.2 Guss級配設計 5-2 5.1.3 熱鑄性瀝青混凝土貫入量試驗 5-3 5.1.4 熱鑄性瀝青混凝土流動性試驗 5-4 5.1.5 熱鑄性瀝青混凝土彎曲試驗 5-6 5.1.6 熱鑄性瀝青混凝土輪跡試驗 5-7 5.1.7建議廠拌瀝青含量 5-8 5.2 廠拌瀝青含量8.5%分析 5-9 5.2.1 貫入量試驗 5-9 5.2.2 彎曲試驗 5-11 5.2.3 輪跡試驗 5-13 5.3 熱鑄性瀝青混凝土之工程性質 5-14 5.3.1 Guss瀝青含量與動態穩定值之關係 5-14 5.3.2 流動性與動態穩定值之關係 5-15 5.3.3 建議瀝青含量之輪跡試驗 5-16 5.3.4 不同石粉含量對輪跡及貫入試驗之影響 5-17 5.3.5 熱鑄性瀝青混凝土之彎曲試驗 5-20 5.3.6 間接張力試驗 5-21 5.4 老化對熱鑄性瀝青混凝土特性之影響 5-22 5.4.1 膠漿之模擬老化 5-22 5.4.2 老化對流動性之影響 5-24 5.4.3 老化對貫入量之影響 5-25 5.4.4 老化對輪跡變形之影響 5-28 5.4.5 老化對彎曲變形的影響 5-31 5.5 GUSS疲勞試驗 5-33 5.5.1 鬆弛模數E(t) 5-33 5.5.2 不同應變率試驗 5-34 5.5.3 熱鑄性瀝青混凝土之疲勞壽命分析 5-35 5.5.4 應變振幅與疲勞壽命之關係 5-36 5.5.5 載重頻率對疲勞壽命之關係 5-39 5.5.6 勁度曲線(stiffness curve)分析疲勞行為 5-40 5.5.7 應力-應變迴圈與消散能分析疲勞壽命 5-45 5.5.8 能量比分析疲勞壽命 5-50 5.5.9 消散能比(dissipated energy ratio, DER)分析疲勞壽命 5-51 第六章 熱鑄性瀝青混凝土工程案例分析 6-1 6.1 工程概要 6-1 6.2 材料和方法 6-2 6.2.1 材料分析 6-2 6.2.2 配比設計及規範 6-6 6.2.3 Lueer 流動性試驗 6-7 6.2.4 貫入試驗 6-9 6.2.5 輪跡試驗與彎曲試驗 6-11 6.2.6 建議用油量 6-13 6.3 現場鋪築 6-13 6.3.1 拌和廠拌和 6-13 6.3.2 道路試鋪 6-15 6.3.3 道路現場施工 6-17 第七章 結論與建議 7-1 7.1 結論 7-1 7.1.1 Guss瀝青膠漿 7-1 7.1.2 熱鑄性瀝青混凝土 7-2 7.1.3 Guss工程實務 7-4 7.2 建議 7-5 參考文獻 參-1

    參考文獻

    中華鋪面工程學會(2007),台灣鋪面(Taipave)之設計與應用實務(五)—GUSS瀝青混凝土,桃園。
    邱德超(2005),分析回收瀝青添加軟化劑之膠漿性質,國立成功大學土木工程研究所碩士論文,台南。
    林彥宇 (2004)「分析瀝青混凝土之裂縫生成與疲勞壽命」,國立成功大學土木工程所碩士論文,台南。
    夏明勝(2001),「鋼床鈑鋪面—GUSS瀝青混凝土」,臺灣公路工程,第28卷,第3期,第5-12頁。
    郭柏宏(2000),瀝青膠漿質流性質對車轍行為之影響,國立成功大學土木工程研究所碩士論文,台南。
    國立成功大學土木系(2009),國道六號南投段第C606A標國姓高架橋工程—熱鑄膠泥瀝青混凝土配比設計,台南。
    國道新建工程局(2008),「國道六號C606A標流動性瀝青混凝土(Guss)特定條款」,台北。
    夏明勝 (2005)「分析瀝青混凝土之材料與疲勞特性」,國立成功大學土木工程所博士論文,台南。
    國道新建工程局 (2008)「國道六號C606 A標流動性瀝青混凝土(Guss)特定條款」,台北。
    陳建旭、黃建中 (2009)「流動性瀝青混凝土(Guss)之配比設計與鋪築」,臺灣公路工程,第35卷,第4期,第2-21頁。
    陳榮波 (1997)「斜張橋鋼床鈑特殊舖裝」,中華顧問工程,台北。
    張學鴻 (2005)「再生瀝青混凝土之性質評估」,國立成功大學土木工程所碩士論文,台南。
    Anderson, D.A. and Goetz, W.H. (1973), “Mechanical behavior and reinforcement of mineral filler-asphalt mixtures.” Proc. Assoc. Asphalt Paving Technologists, ,Vol .42, pp.37–66.
    Al-Khateeb, G., and Shenoy, A. (2004). “A disrinctive fatigue failure criterion,” Journal of Association of Asphalt Paving Technologists, Vol.73, pp.585-622.
    Arnaud, L., and Houel, A. (2006). “Fatigue Damage and Cracking of Asphalt Pavement on Orthotropic Steel Bridge Deck,” Transportation Research Board Annual Meeting, Washington, D.C. (CD-ROM).
    Bianchetto, H., Miró, R., Pérez-Jiménez, F., and Martínez A.H. (2007), ”Effect of Calcareous Fillers on Bituminous Mix Aging,” Annual Meeting of Transportation Research Board, Washington, D.C. (CD-ROM).
    Buttlar, W.G., Bozkurt, D., Al-Khateeb, G.G. and Waldhoff, A.S. (1999), “Understanding asphalt mastic behavior through micromechanics.” Transportation Research Record 1681, pp.157–169.
    Christensen, D.W. Jr. and Anderson, D.A.(1992),”Interpretation of dynamic mechanical test data for paving grade asphalt cements,” Proc. Assoc. Asphalt Paving Technologists, Vol.61, pp.67-116.
    Craus, J., Ishai, I. and Sides, A. (1978), “Some physico-chemical aspects of the effect and the roles of the filler in bituminous paving mixtures.” Proc. Assoc. Asphalt Paving Technologists, Vol.47, pp.558–588.
    Chen, X., Huang, W., and Wang, J. (2004). “Permanent Deformation and Deformation Compliance of Guss-asphalt for Orthotropic Steel Deck Plate Surfacing,” Journal of Southeast University, Vol. 20, No. 3, pp.360-363.
    Ghuzlan, K.A. and Carpenter, S.H. (2000). “Energy-derived, Damage-based Failure Criterion for Fatigue Testing,” Transportation Research Record, No. 1723, pp.141-149, Transportation Research Board.
    Huang, B., Shu, X. and Chen, X. (2007) “Effects of mineral fillers on hot-mix asphalt laboratory-measured properties,” International Journal of Pavement Engineering, Vol.8, pp.1-9
    Huang. S., and Zwmg,. M.(2007)”Characterization of aging effect on rheological properties of asphalt-filler systems,” Internation Journal of Pavement Engineering, Vol.8, No.3, pp.213-223.
    Héritier, B., Olard, F., Loup, F., and Krafft, S. (2005) “Design of a Specific Bituminous Surfacing for the World’s Highest Orthotropic Steel Deck Bridge France’s Millau Viaduct,” Transportation Research Record, No.1929, pp.141–148, Transportation Research Board.
    Hicks, R.G., Dussek, I.J., and Seim, C. (2000). “Asphalt Surfaces on Steel Bridge Decks,” Transportation Research Record, No. 1740, pp.135-142, Transportation Research Board.
    Hopman, P.C., Kunst, P.A.J.C., and Pronk, A.C. (1989). “A Renewed Interpretation Method for Fatigue Measurements, Verificition of Miner’s Rule,” 4th Eurobitume Symposium in Madrid, Vol.1, pp.557-561.
    Hulsey, J.L., Yang, L., and Raad, L. (1999). “Wearing Surfaces for Orthotropic Steel Bridge Decks,” Transportation Research Record, No.1654, pp.141-150, Transportation Research Board.
    Kim, Y.R., Little, D.N., and Lytton, R.L. (2002). “Use of Dynamic Mechanical Analysis (DMA) to Evaluate the Fatigue and Healing Potential of Asphalt Binders in Sand Asphalt Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol.71, pp.176-206.
    Kim, Y.R., Little, D.N., and Lytton, R.L. (2003). “Fatigue and Healing Characterization of Asphalt Mixtures,” Journal of Materials in Civil Engineering, Vol.15, pp.75-83.
    Kutay, M.E., Gibson, N., and Youtcheft, J. (2008). “Conventional and Viscoelastic Continuum Damage (VECD) Based Fatigue Analysis of Polymer Modified Asphalt Pavements,” Journal of Association of Asphalt Paving Technologists, Vol.77, pp.395-434.
    LaForce, R. (2005). “I 70 Glenwood Canyon Overlay with Trinidad Lake Asphalt/Steel Slag Hot Mix Asphalt,” Colorado Department of Transportation, No.CDOT-DTD-R-2005-13 Final Report, Denver.
    Lee, S.H., Kim, W.S., and Kim, J.H. (2008). “10 Year History of Guss Asphalt Pavement Technology in Korea,” Proceedings of International Conference of Pavement Technology Sapporo, Japan, 6th ICPT, pp.643-650.
    Martinez, A., Miró Recasens, R., Pérez Jiménez, F., and Bianchetto ,H. (2005). “Effect of filleron the ageing potential of asphalt mixtures.” Journal of the Transportation Research Board, No. 1901, TRB, National Research Council, Washington, D.C., pp.10-17.
    Mangus, A.R. (2005). “A Fresh Look at Orthotropic Technology,” Public Roads, Vol.68, No.5, pp.1-15.
    Olard, F., Héritier, B., Loup, F., and Krafft, S. (2005). “New French Standard Test Method for the Design of Surfacing on Steel Deck Bridges,” Road Materials and Pavement Design, Vol.6, No.4, pp.515-531.
    Park, S. W., Kim, Y.R., and Schapery, R.A. (1996). “A Viscoelastic Continuum Damage Model and Its Application to Uniaxial Behavior of Asphalt Concrete,” Mechanics of Materials, Vol.24, pp.241-255.
    Pell, P.S., and Taylor, I.F. (1969). “Asphaltic Road Materials in Fatigue,” Proceeding of the Association of Asphalt Paving Technologists, Vol.38, pp577-593.
    Ridgen, P. (1947),” The use of fillers in bituminous road surfacing – A study of filler-binder system in relation to filler characteristics.” Journal of Society of Chemical Industry, No.66, pp.9-299.
    Ruiz, C. (1947), “Sobre las propiedades mecánicas del sistema fíller-betún.” Proc. Segunda Reunión Anual del Asfalto, Buenos Aires, Argentina, Nov.17-22 , pp.25-52 (in Spanish).
    Raithby, K.D., and Sterling, A.B. (1972). “Some Affect of Loading History on the Fatigue Performance of Rolled Asphalt,” Transport and Road Research Laboratory, No. LR 496, Crowthorne, Bershire, England.
    Rowe, G.M., (1993). “Perfomance of Asphalt Mixtures in the Trapezoidal Fatigue Test,” Journal of Association of Asphalt Paving Technologists, Vol.62, pp.344-384.
    Smith, J.W. (1987). “Asphalt Paving for Steel Bridge Decks,” Journal of Association of Asphalt Paving Technologists, Vol.56, pp.555-572.
    Tayebli, A.A., Rowe, G., and Sousa, J. (1992). “Fatigue Response of Asphalt-Aggregate Mixture,” Jounal of the Association of Asphalt Paving Technologists, Vol.61, pp.333-360.

    Van der Poel, C.A.(1954),”A general system describing the visco-elastic properties of bitumens and its relation to routine test data,”J. Appl. Chem, pp.221-236.
    Warden, W. B., Hudson, S. B., Howell, H. C.(1959), ”Evaluation of Mineral Fillers in Terms of Practical Pavement Performance,” Journal of the Association of Asphalt Paving Technologists, Vol.28, pp.316-352.
    Winniford, R. S.(1961), “The Rheology of Asphalt-Filler System as Shown in The Microviscoimeter,” Physical Propertier of Asphalt Cement Binders. Physical Properties of Asphalt Cement Binders.ASTM STP 390. pp.102-121
    Zimmer, R.A., Choubane, B., and Holzschucher, C.R. (2003). “Friction Testing Method for Open-Grated Steel Bridge Decks,” Transportation Research Record, No.1860, pp.137-143, Transportation Research Board.

    無法下載圖示 校內:2026-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE