| 研究生: |
許文騰 Hsu, Wen-Teng |
|---|---|
| 論文名稱: |
適用於具有輸入-輸出直接傳輸項及輸入飽和限制之未知系統的降階觀測器與NARMAX為基礎之自調式容錯追蹤器 An Input-Constrained Reduced-Order Observer and NARMAX Model-Based Adaptive Tracker with Fault Tolerance for Unknown Systems with an Input-Output Direct Feed-Through Term |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 輸入-輸出直接傳輸項 、降階觀測器 、輸入飽和限制 、數位重新再設計 、非線性自回歸-移動平均-輸入變數模型 |
| 外文關鍵詞: | Input-output direct feed-through term, reduced-order observer, input constraint, digital redesign, NARMAX model |
| 相關次數: | 點閱:166 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出針對具有適用於具有輸入-輸出直接傳輸項及輸入飽和限制之未知系統的降階觀測器與NARMAX為基礎之自調式容錯追蹤器設計,以達到良好的追蹤性能。其主要貢獻如下:首先,針對具有輸入-輸出直接傳輸項之線性系統,本論文提出了一種全階/降階觀測器與追蹤器實現法,以克服因採用即時輸出與即時輸入,以預測即時狀態及決定當下輸入,所導致的觀測器與控制器具有互為因果關係的問題。所提方法不受限於輸入與輸出維度需相同的條件,且可以避免因系統具有輸入-輸出直接傳輸項,導致在設計類比降階觀測器時免不了的輸入微分項。第二,針對未知非線性隨機系統,提出基於改良式非線性自迴歸-移動平均-輸入變數模型的主動容錯狀態空間自調式控制器。應用離線的觀測器/卡爾曼濾波器鑑別方法,提供改良式非線性自迴歸-移動平均-輸入變數模型較佳的初始參數,以顯著地改善其遞迴推廣最小平方法的收斂速度。在系統輸入參數發生有突發式或漸進式的錯誤時,狀態空間自調式控制器也會同時做出適當的反應。最後,提出了適用於具有輸入-輸出直接傳輸項及輸入飽和限制之未知非線性隨機系統的降階觀測器為基礎之自調式容錯追蹤器。在本論文中,以多個例題來說明所提方法的有效性。
This dissertation proposes an input-constrained reduced-order observer-based adaptive tracker with fault tolerance for unknown nonlinear stochastic systems with an input-output direct feed-through term to obtain good tracking performance. The major contributions of this dissertation are stated as follows: Firstly, realization of causal current output-based optimal full/reduced-order observer and tracker for the linear sampled-data system with a direct transmission term from input to output is newly proposed. Furthermore, the time derivative of the control input existed in the continuous-time reduced-order observer can be avoided in the proposed one for the continuous-time system with an input-output feed-through term. Secondly, an active full-order fault tolerance tracker using the modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model for state-space self-tuning control (STC) of unknown nonlinear stochastic hybrid systems with a direct transmission term is proposed. For the system identification process, the initial parameters of the modified NARMAX model assigned by the off-line OKID and can speed up the convergence speed of the recursive extended least squares (RELS) method to determine a reliable dynamic model. Moreover, the modified state-space self-tuning control methodology due to the NARMAX model can quickly make an appropriate reaction to the variation of system parameters when the abrupt input fault and/or the gradual input fault occurs. Finally, an input-constrained reduced-order observer-based self-tuner with fault tolerance for unknown nonlinear stochastic systems with an input-output direct feed-through term has been proposed. Some illustrative examples are given to demonstrate the effectiveness of the proposed methodologies.
[1] Aström, K. J. and B. Wittenmark, Adaptive Control, NY: Addison-Wesley, 1989.
[2] Anderson, B. D. O. and J. B. Moore, Optimal Control: Linear Quadratic Methods, Englewood Cliffs: NJ, Prentice-Hall, 1989.
[3] Billings, S. A. and Q. M. Zhu, “Rational model identification using an extended least-squares algorithm,” International Journal of Control, vol. 54, no. 3, pp. 529-546, 1991.
[4] Chen, T. and B. A. Francis, Optimal Sampled-Data Control Systems, New York : Springer, 1992.
[5] Chen, C. H., J. S. H. Tsai, S. M. Guo, and L. S. Shieh, “Iterative Learning Control for the Linear Model with a Singular Feedthrough Term Via LQAT,” Applied Mathematical Sciences, vol. 6, no. 86, pp. 4283-4294, 2012.
[6] Chen, S. and Billings, S. A., “Representations of nonlinear systems: the NARMAX model,” International Journal of Control, vol. 49, no. 3, pp. 1013-1032, 1989.
[7] Dabney, J. B. and T. L. Harman, Mastering Simulink 2, Englewood Cliffs, NJ: Prentice-Hall, 1998.
[8] Darouach, M., M. Zasadzinski, and M. Hayar, “Reduced-order observer design for descriptor systems with unknown inputs,” IEEE Transactions on Automatic Control, vol. 41, no. 7, pp. 1068-1072, 1996.
[9] Dabney, J. B. and T. L. Harman, Mastering Simulink 2, Englewood Cliffs, NJ: Prentice-Hall, 1998.
[10] Franklin, G. F., J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamics Systems, 3rd, New York: Addison-Wesley, Reading, MA, 1994.
[11] Fujimoto, H., A. Kawamura, and M. Tomizuka, “Generalized digital redesign method for linear feedback system based on N-delay control,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, pp. 101-109, 1999.
[12] Funga, E. H. K., Wongb, Y. K., Hoa, H. F. and Mignolet, M. P., “Modelling and prediction of machining errors using ARMAX and NARMAX structures,” Applied Mathematical Modelling, vol. 27(8), pp. 611–627, August 2003.
[13] Gao, H., W. Sun, and P. Shi, “Robust sampled-data control for vehicle active suspension systems,” IEEE Transactions on Control Systems Technology, vo. 18, no. 1, pp. 238-245, 2010.
[14] Guo, S. M., L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 11, pp.1557-1570, 2000.
[15] Guo, S. M., L. S. Shieh, G. Chen, C. F. Lin, and J. Chandra, “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation and Chaos, vol. 11, no. 4, pp. 1079-1113, 2001.
[16] Haddad, W. M. and D. S. Bernstein, “Optimal reduced-order observer-estimators,” Journal of Guidance, Control, and Dynamics, vol. 13, no. 6, pp. 1126-1135, 1990.
[17] Hippe, P., Windup in Control: Its Effects and Their Prevention, London: Springer-Verlag, 2006.
[18] Hu, T., A. R. Teel, and L. Zaccarian, “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44, no. 2, pp. 512-519, 2008.
[19] Huang, C. M., J. S. H. Tsai, R. S. Provence, and L. S. Shieh, “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications and Methods, vol. 24, no. 4, pp. 197-236, 2003.
[20] Ieko, T., Y. Ochi, and K. Kanai, “Digital redesign of linear state-feedback law via principle of equivalent areas,” Journal of Guidance, Control, and Dynamics, vol. 24 no. 4, pp. 857-859, 2001.
[21] Ikonen, E. and Najim, K., Advanced Process Identification and Control, Marcel Dekker, New York, 2002.
[22] Johansen, T. A., I. Petersen, and O. Slupphaug, “Explicit sub-optimal linear quadratic regulation with state and input constraints,” Automatica, vol. 38, no. 7, pp. 1099-1111, 2002.
[23] Juang, J. N, Applied System Identification, Englewood Cliffs. NJ: Prentice-Hall, 1994.
[24] Juang, J. N., Horta, L. G. and Longman, R. W., “Input/output system identification: learning from repeated experiments,” AIAA Monograph on Progress in Astronautics and Aeronautics, vol. 29, pp. 87-99, 1990.
[25] Juang, J. N. and R. S. Pappa, “A comparative overview of modal testing and system identification for control of structures,” Shock and Vibration Digest, vol. 20, no.5, pp. 4-15, 1988.
[26] Kailath, T., “An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise,” IEEE Transactions on Automatic Control, vol. AC-13, pp. 646-655, 1968.
[27] Kim, J. S. T. W. Yoon, H. Shim, and J. H. Seo, “Switching adaptive output feedback model predictive control for a class of input-constrained linear plants,” IET Control Theory and Application, vol. 2, no. 7, pp. 573-582, 2008.
[28] Korenberg, M. J., Bruder, S. B., and McLlroy, P. J., “Exact orthogonal kernel estimation from finite data records: Extending Weiner's identification of nonlinear systems,” Annals of Biomedical Engineering, vol. 16, no. 2, pp. 201-214, 1988.
[29] Kothare, M. V., P. J. Campo, M. Morari, and C. N. Nett, “A unified framework for the study of anti-windup designs,” Automatica, vol. 30, no. 12, pp. 1869-1883, 1994.
[30] Kwakernaak, H. and R. Sivan, Linear Optimal Control Systems, NY: Wiley-Interscience, 1972.
[31] Lee, Ho Jae, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1595-1600, 2003.
[32] Leontaritis, I. J. and S. A. Billings, “Input-output parametric models for nonlinear systems, Parts I and II,” International Journal of Control, vol. 41, no. 2, pp. 303-344, 1985.
[33] Leontaritis, I. J. and Billings, S. A., “Model selection and validation methods for non-linear systems,” International Journal of Control, vol. 45, no. 1, pp. 311-341, 1987.
[34] Lewis, F. L., Applied Optimal Control and Estimation, Englewood Cliffs: NJ, Prentice-Hall, 1992.
[35] Lewis, F. L., D. Vrabie, and V. L. Syrmos, Optimal Control, 3rd, New York: John Wiley and Sons, 2012.
[36] Li, J., W. Chen, J. Li, and Y. Fang, “Adaptive NN output-feedback stabilization for a class of stochastic nonlinear strict-feedback systems,” ISA Transactions, vol. 48, no. 4, pp. 468-475, 2009.
[37] Lin P. H., A Modified NARMAX Model-based Self-tuner with Fault Tolerance for Unknown Nonlinear Stochastic Hybrid Systems with an Input-output Direct Feed-through Term and Input Constraint, M.S. thesis, National Cheng Kung University, .
[38] Liu, Q., R. Wang, and D. Wu, “Stability analysis for sampled-data systems based on multiple Lyapunov functional method,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 9, pp. 6345-6355, 2006.
[39] Ljung, L., System Identification: Theory for the User, 2nd edition, Prentice-Hall, Englewood Cliffs, 1999.
[40] Ljung, L. and T., Theory and Practice of Recursive Identification, MIT Press, Cambridge, 1983.
[41] Madsen, J. M., L. S. Shieh, anc S. M. Guo, “State‐space digital pid controller design for multivariable analog systems with multiple time delays,” Asian Journal of Control, vol. 8 no. 2, pp. 161-173, 2006.
[42] Maeder, U., R. Cagienard, and M. Morari, Explicit Model Predictive Control, Heidelber: Springer-Berlin, 2007.
[43] Mao, Z., B. Jiang, and P. Shi, “Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer,” Automatica, vol. 46, no. 11, pp. 1852-1859, 2010.
[44] Mare J. B., and J. A. D. Dona, “Solution of the input-constrained LQR problem using dynamic programming,” Systems and Control Letters, vol. 56, no. 5, pp. 342-348, 2007.
[45] Mertzios, B. G., M. A.Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability and observability time domain conditions of singular systems,” IEEE Transactions on Automatic Control, vol. 33, no. 8, pp.788-791, 1988.
[46] Mulder, E. F., P. Y. Tiwari, and M. V. Kothare, “Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization,” Automatica, vol. 45, no. 3, pp. 805-811, 2009.
[47] Mohamed Vall, O. M. and R. M’hiri, “An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control,” International Journal of Automation and Computing, vol. 5, no. 3, pp. 313-318, 2008.
[48] Ogunfunmi, T., Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches, Springer, New York, 2007.
[49] Pappa, R. S. and J. N. Juang, “Some experiences with the eigensystem realization algorithm,” Sound and Vibration, vol. 22, no. 1, pp. 30-35, 1988.
[50] Phan, M., Juang, J. N. and Longman, R. W., “Identification of linear multivariable systems from a single set of data by identification of observers with assigned real egienvalues,” Journal of Astronautical Sciences, vol. 40, no. 2, pp. 261-279, 1992.
[51] Phan, M., Horta, L. G., Juang, J. N. and Longman, R.W., “Linear system identification via an asymptotically stable observer”, Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 59-86, 1993.
[52] Polites, M. E., “Ideal state reconstructor for deterministic digital control systems,” International Journal of Control, vol. 49, pp. 2001-2011, 1989.
[53] Sawada, K. T. Kiyama, and T. Iwasaki, “Generalized sector synthesis of output feedback control with anti-windup structure,” System Control Letter, vol. 58, no. 6, pp. 421-428, 2009.
[54] Sheen, I. E., J. S. H. Tsai, and L. S. Shieh, “Optimal digital redesign of continuous-time systems with input time delay and/or asynchronous sampling,” Journal of The Franklin Institute, vol. 335, no. 4, pp. 605-616, 1998.
[55] Sheen, I. E., J. S. H. Tsai, and L. S. Shieh, “Optimal digital redesign of continuous-time systems using fractional-order hold,” Optimal Control Applications and Methods, vol. 18, no. 6 ,pp. 399-422, 1997.
[56] Sheen, I. E., J. S. H. Tsai, and L. S. Shieh, “Optimal digital redesign of continuous-time system using non ideal sampler and zero-order hold,” Journal of Control Systems and Technology, vol. 5, no. 4, pp.243-252, 1997.
[57] Shieh, L. S., B. B. Decrocq, and J. L. Zhang, “Optimal digital redesign of cascaded analogue controllers,” Optimal Control Applications and Methods, vol. 12, no. 4, pp. 205-219, 1991.
[58] Shieh, L. G., Z. Liu, and J. W. Sunkel, “Optimal uniform-damping ratio controller for sequential design of multivariable systems,” International Journal of Systems Science, vol. 22, pp. 1371-1389, 1991.
[59] Shieh, L. S., C. T. Wang, and Y. T. Tsay, “Multivariable state feedback self-tuning controllers,” Stochastic Analysis and Applications, vol. 3, no. 2, pp. 189-212, 1985.
[60] Shieh, L. S., H. M. Dib, and S. Ganesan, “Linear quadratic regulators with eigenvalue placement in a specific region,” Automatica, vol. 24, pp. 819-823, 1988.
[61] Shieh, L. S., W. M. Wang, and M. K. A. Panicker, “Design of PAM and PWM digital controllers for cascaded analog systems,” ISA transactions, vol. 37, no. 3, pp. 201-213, 1998.
[62] Shieh, L. S., Y. L. Bao, and F. R. Chang, “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceeding D-Control Theory and Application, vol. 136, pp. 17-27, 1989.
[63] Shieh, L. S., and Y. T. Tsay, “Transformations of a class of multivariable control systems to block companion forms,” IEEE Transactions on Automatic Control, vol. AC-27, pp. 199-203, 1982.
[64] Stoorvogel A., The Control Problem: A State Space Approach, Prentice Hall, Englewood Cliffs, NJ, 1992.
[65] Stoorvogel, A. A., A. Saberi, and B. M. Chen, “Full and reduced-order observer-based controller design for -optimization,” International Journal of Control, vol. 58, no. 4, pp. 803-834, 1993.
[66] Soderstrom, T., and P. Stoica, System Identification, Englewood Cliffs: Prentice-Hall, 1989.
[67] Solmaz, S. K. and J. Faryar, “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1934-1939, 2009.
[68] Sontag, E. D., Polynomial Response Maps, Lecture Notes in Control and Identification Science, vol. 13, Springer-Verlag, Berlin, 1979.
[69] Tarbouriech, S. and M. Turner, “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3, no. 1, pp. 1-19, 2009.
[70] Teixeira, M. C. M. and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133-142, 1999.
[71] Tiwari, P. Y., E. R. Mulder, and M. V. Kothare, “Synthesis of stabilizing anti-windup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2341-234, 2007.
[72] Tsai, J. S. H., C. Wang, T. Kuang, C. C., S. M. Guo, L. S. Shieh, and C. W. Chen, “A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems,” Applied Mathematical Modeling, vol. 34, pp. 3030-3054, 2010.
[73] Tsai, J. S. H., C. C. Huang, S. M. Guo, and L. S. Shieh, “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,” Applied Mathematical Modelling, vol. 35, no. 8, pp. 3893-3904, 2011.
[74] Tsai, J. S. H., C. H. Chen, M. J. Lin, “A novel linear quadratic observer and tracker for the linear sampled-data regular system with a direct feedthrough term: Digital redesign approach,” Applied Mathematical Sciences, vol. 6, no. 68, pp. 3381-3409, 2012.
[75] Tsai, J. S. H., C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of The Franklin Institute, vol. 330, no. 6, pp. 1063-1086, 1993.
[76] Tsai, J. S. H., F. M. Cheng, T. Y. Yu, and L. S. Shieh, “Efficient decentralized iterative learning tracker for unknown sampled-data interconnected large-scale state-delay systems with closed-loop decoupling property,” ISA Transactions, vol. 51, no. 1, pp. 81-94, 2012.
[77] Tsay, Y. T., and L. S. Shieh, “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceeding D., Control Theory and Application, vol. 123, pp. 93-101, 1981.
[78] Tsay, Y. T., L. S. Shieh, and S. Barnett, Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach. Berlin, Heidelberg: Springer-Verlag, 1988.
[79] Tsai, J. S. H., L. S. Shieh, J. L. Zhang, N. P. Coleman, “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete systems,” Control-Theory and Advanced Technology, vol. 5, no. 1, pp. 37-65, 1989.
[80] Tsai, J. S. H., Y. Y. Du, P. H. Huang, S. M. Guo, C. W. Chen, L. S. Shieh, and Y. H. Chen, “Iterative learning-based decentralized adaptive tracker for large-scale systems: A digital redesign approach,” ISA Transactions, vol. 50, pp. 344-356, 2011.
[81] Tsai, J. S. H., Y. Y. Du, S. M. Guo, C. W. Chen, and L. S. Shieh, “Optimal anti-windup digital redesign of MIMO control systems under input constraints,” IET Control Theory and Applications, vol. 5, no. 3, pp. 447-464, 2011.
[82] Tsai, J. H., Y. Y. Du, W. Z. Zhuang, S. M. Guo, C. W. Chen, and L. S. Shieh, “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” Control Theory and Applications, IET, vol. 5, no. 3, pp. 447-464, 2011.
[83] Tsai, J. S. H., Y. Y. Lee, P. Cofie, L. S. Shieh, and X. M. Chen, “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol. 37, no. 11, pp. 785-797, 2006.
[84] Tsay, Y. T. and L. S. Shieh, “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceeding D. Control Theory and Application, vol. 123, pp. 93-101, 1981.
[85] Tsay, Y. T., L. S. Shieh, and S. Barnett, Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach, Berlin, Heidelberg: Springer-Verlag, 1988.
[86] Valluri, S. and M. Soroush, “A non-linear controller design method for processes with saturating actuators,” International Journal Control, vol. 76, no. 7, pp. 698-716, 2003.
[87] Velden, van der J. A. J., The Application of a System Identification Technique for Modelling a Nonlinear Acoustic Transducer, Eindhoven University of Technology, 1992.
[88] Wang, C. J. and H. E. Liao, “Impulse observability and impulse controllability of linear time-varying singular systems,” Automatica, vol. 37, no. 11, pp. 1867-1872, 2001.
[89] Wang, H. P., J. S. H. Tsai, Y. I. Yi, and L. S. Shieh, “Lifted digital redesign of prediction-based digital controller for hybrid chaotic system,” International Journal of Bifurcation and Chaos, vol. 14, no. 7, pp. 2295-2320, 2004.
[90] Wang, H. J., A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays,” Journal of Zhejiang University Science A, vol. 9, no. 4, pp. 546-551, 2008.
[91] Wang, J. H., J. S. H. Tsai, J. S. Huang, S. M. Guo, and L. S. Shieh, “A low-order active fault-tolerant state space self-tuner for the unknown sampled-data nonlinear singular system using OKID and modified ARMAX model-based system identification,” Applied Mathematical Modeling, vol. 37, pp. 1242-1274, 2013.
[92] Wang, J. H., J. S. H. Tsai, Y. C. Chen, S. M. Guo, and L. S. Shieh, “An active low-order fault-tolerant state space self-tuner for the unknown sample-data linear regular system with an input-output direct feed-through term,” Applied Mathematical Sciences, vol. 6, no. 97, pp. 4813-4355, 2012.
[93] Warwick, K., “Self-tuning regulators A state-space approach,” International Journal of Control, vol. 33, pp. 839-858, 1981.
[94] Wellstead, P. E. and Zarrop, M. B., Self-Tuning System: Control and Signal Processing, John Wiely and Sons, New York, 1991.
[95] Weng, Y and Z. Chao, “Robust sampled-data output feedback control of active suspension system,” International Journal of Innovative Computing, Information and Control, vol. 10, no. 1, pp. 281-292, 2014.
[96] Wu, F. and B. Lu, “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems and Control Letters, vol. 52, no. 4, pp. 305-322, 2004.
[97] Wu, Z. G., P. Shi, H. Su, and J. Chu, “Sampled-data fuzzy control of chaotic systems based on a T-S Fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 1, pp. 153-163, 2014.
[98] Wu, Z. G., P. Shi, H. Su, and J. Chu, “Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1796-1806, 2013.
[99] Wu, Z. G., P. Shi, H. Su, J. Chu, “Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 8, pp. 1177-1187, 2013.
[100] Yen, G.. G.. and L. W. Ho, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[101] Yoon, S. S., J. K. Park, and T. W. Yoon, “Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs,” Automatica, vol. 44, no. 12, pp. 3176-3180, 2008.
[102] Zaccarian, L. and A. R. Teel, “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49, no. 11, pp. 2055-2061, 2004.
[103] Zaccarian, L., D. Nesic, and A. R. Teel, “L2 anti-windup for linear dead-time systems,” System Control Letter, vol. 54, no. 12, pp. 1205-1217, 2005.
[104] Zhang, H., G. Hui, and Y. Wang, “Stabilization of networked control systems with piecewise constant generalized sampled-data hold function,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 3, pp. 1159-1170, 2013.
[105] Zhang, Y., L. S. Shieh, and A. C. Dunn. “PID controller design for disturbed multivariable systems, ” IEE Proceedings Control Theory and Applications, vol. 151, no. 5, 2004.