簡易檢索 / 詳目顯示

研究生: 劉漢胤
Liu, Han-Yin
論文名稱: 利用過氧化氫對氮化鋁鎵/氮化鎵高電子遷移率電晶體鈍化處理之研究
Investigation of Hydrogen Peroxide Passivation on AlGaN/GaN High Electron Mobility Transistors
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 88
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子遷移率電晶體過氧化氫處理鈍化
外文關鍵詞: AlGaN/GaN, high electron mobility transistor, H2O2 treatment, passivation
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討氮化鋁鎵/氮化鎵高電子遷移率電晶體之鈍化,此鈍化方式為利用過氧化氫(雙氧水)使氮化鋁鎵發生氧化反應,於氮化鋁鎵表面生成原生氧化層做為鈍化層。
    為了瞭解原生氧化層的 (一)表面粗糙度、(二)化學組成、(三)薄膜的縱深分析狀況與(四)鈍化層薄膜對二維電子雲的影響,因此在研究中使用了 (一)原子力顯微鏡、(二)化學分析電子儀與(三)霍爾量測。其中在原子力顯微鏡觀察中,比較未經過雙氧水處理、雙氧水處理七分三十秒、與雙氧水處理十分鐘。在觀察中發現表面粗糙度分別為: 0.6065 nm,0.2822 nm,1.2699 nm。在化學分析電子儀中比較未經處理與雙氧水處理七分三十秒,此二者間的差異,發現鎵的3d電子殼層的電子束縛能由19 eV下降至18.2 eV; 鋁的2p電子殼層的電子束縛能由73.1 eV上升至74.1 eV; 氮的1s電子殼層的電子束縛能由396.48 eV下降至396.2 eV。因此可斷定原生氧化層的材料主要為氧化鋁,再利用化學分析電子儀的縱深分析系統得知原生氧化層厚度大約為13 nm。在霍爾量測中,比較未經過雙氧水處理與雙氧水處理七分三十秒,此二者之間的差異,發現片電子濃度與電子遷移率的乘積分別為1.33×1016 /V-s與1.56×1016 /V-s。
    在瞭解原生鈍化層的化學組成、表面與縱深狀況後,進一步將此一鈍化技術應用於高電子遷移率電晶體的製造上。首先,比較不同的過氧化氫處理時間在直流電的轉移特性上之差異。在研究中挑選了五個時間: 未處理、二分三十秒、五分鐘、七分三十秒、十分鐘。在此比較中發現七分三十秒的有最顯著的特性提升,其最大汲極電流值提升41%、最大轉導值提升47%,因此在接下來的直流電性與微波電性比較中皆採用未經雙氧水處理與雙氧水處理七分三十秒,並比較此二者之間的數據。再者,在崩潰電壓的量測上發現經雙氧水鈍化處理提升53%,在閘極電壓擺幅上經雙氧水鈍化處理七分三十秒提升22%。而在變溫量測中發現鈍化後的元件有較佳的熱穩定性。為瞭解元件在高頻應用的狀況,而進行微波特性的量測,發現在截止頻率與最大震盪頻率各有36%與20%的提升。在功率表現上,功率增益效率在2.4GHz的狀況下,經雙氧水鈍化後的元件由原本的23.03%提升至30.21%,而在5.8GHz的狀況由原本的9.7%上升至12.08%。在雜訊表現上元件經過鈍化處理可明顯改善雜訊強度。在高頻雜訊的部分,2.4GHz 的條件下最小雜訊指數由原本的2.53dB下降至1.86dB,5.8GHz的條件下最小雜訊指數由原本的5.06dB下降至4.15dB。在低頻雜訊部分,線性區的虎格係數由2.3×10-3進步至2.56×10-4,而在飽和區的虎格係數由原本的4.33×10-3進步至5.33×10-4。這種簡易、安全、快速與低成本的鈍化方式能夠有效提升氮化鎵高電子遷移率電晶體的特性,並使其應用更加廣泛。

    The research is mainly investigated on passivation for AlGaN/GaN high electron mobility transistors (HEMT). The passivation approach is to use hydrogen peroxide (H2O2) to make AlGaN occur oxidation reaction, the approach makes the surface of AlGaN form native oxide as passivation layer.
    In order to know (1) surface roughness, (2) chemical composition, (3) depth profile, and (4) the passivation layer affect on two-dimensionl electron gas concentration (2DEG) of native oxide layer, the (1) atomic force microscopy (AFM), (2) electron spectroscopy for chemical analysis (ESCA), and (3) Hall measurement were required to used in the research. The observation of AFM compare without H2O2 treatment with H2O2 treatment 7 minutes 30seconds and 10minutes, and their surface roughness were 0.6065 nm, 0.2822 nm, and 1.2699 nm, respectively. The observation of ESCA compare without H2O2 treatment with H2O2 treatment 7 minutes 30 seconds. The data show that the binding energy of Ga 3d shell decreases from 19 eV to 18.2 eV, the binding energy of Al 2p shell increases from 73.1 eV to 74.1 eV, and the binding energy of N 1s shell decreases from 396.48 eV to 396.2 eV. Thus the data demonstrates that the composition of native oxide is AlOx. The result of using depth profile analysis of ESCA shows that the thickness of AlOx is about 13nm. The Hall measurement compare without H2O2 treatment with H2O2 treatment 7 minutes 30seconds, the electron sheet concentration multiplied by electron mobility were 1.331×1016 /V-s and 1.56×1016 /V-s, respectively.
    After knowing the chemical composition, surface and depth profile of native passivation layer, moreover, the passivation technique was applied to the fabrication of high electron mobility transistors. First, the article compared DC transfer characteristics in the different H2O2 treatment time: without treatment, 2minutes 30seconds, 5 minutes, 7minutes 30seconds, and 10 minutes, respectively. In this comparison, H2O2 treatment time for 7minutes 30 seconds improved significantly, maximum drain current improved 41%, and maximum transconductance improved 47%. Hence, the following texts will demonstrate comparisons of DC characteristics of devices without H2O2 treatment and with H2O2 treatment for 7 minutes 30seconds and comparisons of microwave characteristics of devices without H2O2 treatment and with H2O2 treatment for 7 minutes 30seconds. The breakdown voltage was improved 53% and gate voltage swing (GVS) was improved 22% after H2O2 treatment 7minutes 30seconds. During the temperature–dependent characteristics measurement, the devices with passivation have better thermal stability was observed. In order to know the condition of devices operated under high frequency, microwave characteristics measurement is required. During microwave characteristics measurement cutoff frequency and maximum oscillation frequency were observed to be improved 36% and 20%, respectively. Power characteristics demonstrated that power added efficiency was improved from 23.03% to 30.21% at 2.4GHz and it was also improved from 9.7% to 12.08% at 5.8GHz. Noise characteristics showed that the devices with passivation can obviously improve noise level. For high frequency noise characteristics, minimum noise figure improved from 2.53dB to 1.86dB at 2.4GHz, and from 5.06dB to 4.15dB at 5.8GHz. For low frequency noise characteristics, Hooge’s coefficient in the linear region was improved from 2.3×10-3 to 2.56×10-4, and Hooge’s coefficient in the saturation region was also improved from 4.33×10-3 to 5.33×10-4. The simple, safe, fast, and low-cost passivation approach can effectively improve the characteristics of GaN HEMTs and make its applications more comprehensive.

    Abstract (Chinese) i Abstract (English) iv Table Capations xii Figure Capations xiii Chapter 1 Introduction 1 1-1 Background and Motivation of Research 1 1-2 Organization of This Thesis 3 Chapter 2 AlGaN/GaN Heterostructure 5 2-1 Group III-Nitride Semiconductors 5 2-2 AlGaN/GaN Heterostructure 8 2-3 Electron Transport in AlGaN/GaN Heterostructure 10 2-4 Progress of AlGaN/GaN HEMTs 11 Chapter 3 Materials Growth and Devices Fabrication 13 3-1 Epitaxy Structure 13 3-2 Fabrication Process 13 3-2-1 Mesa Isolation 14 3-2-2 Source and Drain Ohmic Contact 15 3-2-3 Gate Schottky Contact 16 3-2-4 H2O2 Treatment 17 3-3 Metal-Insulator-Semiconductor (M-I-S) Schottky Diode and Metal-Semiconductor (M-S) Schottky Diode Fabrication 17 3-3-1 Mesa Isolation 17 3-3-2 Ohmic Contact 18 3-3-3 H2O2 Treatment and Schottky Contact 18 Chapter 4 Results and Disscussion 19 4-1 Materials Analysis 19 4-1-1 Atomic Force Microscopy 19 4-1-2 Electron Spectroscopy for Chemical Analysis 20 4-1-3 Hall Measurement 21 4-2 DC Characteristics 22 4-2-1 H2O2 Treatment Time-Dependent Characteristics 22 4-2-2 Output Characteristics 24 4-2-3 Transfer Characteristics 24 4-2-4 Gate-Drain Breakdown and Turn-on Characteristics 25 4-2-5 Capacitance-Voltage Measurement 27 4-3 Temperature-Dependent DC Characteristics 27 4-3-1 Temperature-Dependent Output Characteristics 27 4-3-2 Temperature-Dependent Transfer Characteristics 28 4-3-3 Temperature-Dependent Gate-Drain Breakdown and 30 4-3-3 Turn-on Characteristics 4-4 Microwave Characteristics 32 4-4-1 fT and fmax Characteristics 32 4-4-2 Power Characteristics 35 4-4-3 Noise Characteristics 37 4-4-3-1 High Frequency Noise Characteristics 38 4-4-3-2 Low Frequency Noise Characteristics 39 Chapter 5 Conclusion and Future Work 42 5-1 Conclusion 42 5-2 Future Work 43 References 45 Figures 54

    [1]M. Kameche, and N. V. Drozdovski, “GaAs-, InP-, and GaN HEMT-based microwave control devices: what is best and why, ” Microwave J., vol. 48, no. 5, pp. 164-180, 2005.
    [2]M. K. Lee, C. L. Ho, and J. Y. Zeng, “Electrical characteristics of temperature-difference liquid phase deposited SiO2 on GaN with (NH4)2Sx treatment,” Phys. Status Solidi A-Appl.Mat., vol. 205, pp. 2679-2682, 2008.
    [3]D. J. Chen, Y. Q. Tao, C. Chen, Z. L. Xie, Z. Y. Zhai, X. S. Wu, P. Han, R. Zhang, and Y. D. Zheng,
    “Influence of different surface-passivation dielectrics on high-temperature strain relaxation of AlGaN in AlGaN/GaN heterostructures,” J. Vac.Sci. Technol. B, vol. 25, pp. 1896-1898, 2007.
    [4]C. T. Lee and J. T. Yan, “Investigation of a metal-insulator-semiconductor Pt/mixed Al2O3 and Ga2O3
    insulator/AlGaN hydrogen sensor,” J. Electrochem. Soc., vol. 157, pp. J281-J284, 2010.
    [5]P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-
    semiconductor high electron mobility transistor with atomic layer deposited Al2O3 as gate dielectric,”
    Appl. Phys. Lett., vol. 86, pp. 063501-1-063501-3, 2005.
    [6]B. Luo, R. Mehandru, B. S. Kang, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton,
    D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. K. Gillespie, T. Jenkins, J. Sewell, D. Via, and A. Crespo,
    “Small signal measurement of Sc2O3 AlGaN/GaN MOSHEMTs,” Solid-State Electron., vol. 48, pp. 355-358, 2004.
    [7]L. B. Chang, C. H. Chang, M. J. Jeng, H. C. Chiu, and H. F. Kuo, “Barrier height enhancement of AlxGa1-xN/GaN
    Schottky diode prepared by P2S5/(NH4)2S treatment,” Electrochem. Solid State Lett., vol. 10, pp. H79-H81, 2007.
    [8]C. S. Lee, W. C. Hsu, C. S. Ho, and A. Y. Kao, “Investigations on In0.45Al0.55As/InxGa1-xAs metamorphic
    high electron mobility transistors with double gate-recess and SiNx passivation,” J. Electrochem. Soc., vol. 156,
    pp. H367-H371, 2009.
    [9]Stephen A. Campbell, “The science and engineering of microelectronic fabrication 2nd edition,”
    Oxford University Press, 2001.
    [10]Robert Doering, Yoshio Nishi, “Handbook of semiconductor manufacturing technology 2nd edition,”
    CRC Press, 2008.
    [11]S. M. Sze and Kwok. K. Ng, “Physics of semiconductor devices 3rd edition,” John Wiley & Son, 2007.
    [12]H. P. Maruska, J. J. Tietjen, “The preparation and properties of vapor-deposited single crystal line GaN,”
    Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
    [13]P. Javorka, “Fabrication and characterization of AlGaN/GaN high electron mobility transistors,” Ph. D. thesis,
    University of Aachen RWTH, 2004.
    [14]S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: growth, characterization, and properties, ”
    J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
    [15]Mike Golio, “RF and microwave semiconductor devices handbook,” CRC Press 2003.
    [16]R. Jothilingam, M. W. Koch, J. B. Posthill, and G. W. Wicks, “A study of cracking in GaN grown on Si by MBE,”
    J. Electronic Mater., vol. 30, pp. 821-824, 2001.
    [17]M. H. Kim, Y. G. Do, and H. C. Kang, “Effects of step-graded AlGaN interlayer on properties of GaN grown on
    Si (111) using ultrahigh vacuum chemical vapor deposition,” Appl. Phys. Lett., vol. 79, pp. 2713-2715, 2001.
    [18]H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si
    substrate,” J. Cryst. Growth, pp. 189-190, 1998.
    [19]B. Gil, “Low-Dimensional Nitride Semiconductors,” Oxford University Press, 2000.
    [20]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output
    characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3,
    pp. 450-457, 2001.
    [21]R. Grundbacher, D. Ballegeer, A. A. Ketterson, Y. C. Kao, and I. Adesida, “Utilization of an electron beam resist
    process to examine the effects of asymmetric gate recess on the device characteristics of AlGaAs/InGaAs pHEMT's,”
    IEEE Trans. Electron Devices, vol. 44 pp. 2136-2142, 1997.
    [22]J. M. Lopez, T. Gonzalez, D. Pardo, S. Bollaert, T. Parenty, and A. Cappy, “Design optimization of AlInAs-GaInAs
    HEMTs for high frequency applications,” IEEE Trans. Devices, vol. 51, pp. 521-528, 2004.
    [23]D. Geiger, J. Dickmann, C. Wolk, and E. Kohn, “Recess dependent breakdown behavior of GaAs-HFETs,” IEEE
    Electron Device Lett., vol. 16, pp. 30-32, 1995.
    [24]A. Khan, M. J. N. Kuzina, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur,“Microwave performance of a 0.25µm
    gate AlGaN/GaN heterostructure field effect transistor,” Appl. Phys. Lett., vol. 65, pp. 1121-1123, 1994.
    [25]O. Aktas, W. Kim, Z. Fan, S. N. Mohammad, A. Botchkarev, and A. Salvador, “High transconductance normally-off GaN
    MODFET,” IEEE Electron Device Lett., vol. 31, no. 16, pp. 1389-1390, 1995.
    [26]Martin Kocan, “AlGaN/GaN MBE 2DEG heterostructures: interplay between surface-, interface- and device-properties, ”
    PhD. thesis, University of Aachen RWTH, 2003.
    [27]F. Y. Wu, P. B. Keller, D. Kapolnek, S. P. Denbaars, and U. K. Mishra,“Measured microwave power performance of
    AlGaN/GaN MODFET,” IEEE Electron Device Lett., vol. 17, pp. 455-457, 1995.
    [28]F. Y. Wu, P. B. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, and U. K. Mishra,“Bias dependent microwave performance
    of AlGaN/GaN MODFET’s up to 100V,” IEEE Electron Device Lett., vol. 18, pp. 290-292, 1997.
    [29]U. K. Mishra, F. Y. Wu, B. P. Keller, S. Keller, and S. P. Denbarrs, “GaN microwave electronics,” IEEE Trans. Microw.
    Theory Tech., vol. 46, pp. 756-761, 1998.
    [30]V. Kumar, W. Lu, F. A. Khan, R. Schwindt, A. Kuliev, G. Simin, and J. Yang, “High performance 0.25µm gate-length
    AlGaN/GaN HEMTs on sapphire with transconductance of over 400mS/mm,” Electron. Lett. vol., 38, pp. 252-253, 2002.
    [31]T. S. Sheppard, K. Doverspike, L. W. Pribble, T. S. Allen, W. J. Palmour, and T. L. Kehias, “High power microwave
    GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    [32]G. J. Sullivan, M. Y. Chen, J. A. Yang, Q. Chen, and R. L. Pierson, “High power 10GHz operation of AlGaN HFETs on
    insulating SiC,” IEEE Electron Device Lett., vol. 19, pp. 198-199, 1998.
    [33]L. Wu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100GHz fT and low microwave noise,”
    IEEE Trans. Electron Device, vol. 48, no. 3, pp. 581-585, 2001.
    [34]Y. Cordier, F. Semond, J. Massies, B. Dessertene, S. Cassette, M. Surrugue, D. Adam, and S. L. Delage, “AlGaN/GaN HEMTs
    on resistive Si (111) substrate grown by gas-source MBE,” Electron. Lett., vol. 38, no. 2, pp. 91-92, 2002.
    [35]V. Hoel, N. Vellas, C. Gaquiere, and J. C. De Jaeger, “High-power AlGaN/GaN HEMTs on resistive silicon substrate,” Electron.
    Lett., vol. 38, pp. 750-752, 2002.
    [36]J. Chen, D. G. Ivey, J. Bardwell, Y. Liu, H. Tang, and J. B. Webb, “Microstructual analysis Ti/Al/Ti/Au ohmic contact to
    n-AlGaN/GaN,” J. Vac. Sci. Technol., vol. 20, no. 3, pp. 1004-1010, 2002.
    [37]D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. S. Riba, “Low-resistance Ti/Al/Ti/Au
    multilayer ohmic contact to n-GaN,"J. Appl. Phys., vol. 89, no. 11, pp. 6214-6217, 2001.
    [38]N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, “Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type
    GaN formed by vacuum annealing,” J. Vac. Sci. Technol., vol. 19, no. 1, pp. 261-267, 2001.
    [39]John C. Vickerman, “Surface analysis-the principal techniques,” John Wiley & Son, 2000.
    [40]B. G. Yacobi, “Semiconductor materials: an introduction to basic principles,” Kluwer Academic, 2003.
    [41]Hashizume, Tamotsu, Ootomo, Shinya, Inagaki, Takanori, Hasegawa, and Hideki,“Surface passivation of GaN and GaN/AlGaN
    heterostructures by dielectric films and its application to insulated-gate heterostructure transistors,” J. Vac. Sci. Technol., vol. 21, no. 4,
    pp. 1828-1838, 2003.
    [42]S. Ootomo, T. Hashizume, and H. Hasegawa, “Surface passivation of AlGaN/GaN heterostructures using an ultrathin Al2O3 layer,”
    Phys. Status Solidi A-Appl. Mat., vol. 188, no. 1, pp. 371-374, 2001.
    [43]J. Jhin, H. Kang, D. Byun, D. Kim, I. Adesida, “Reactive sputtering of Al2O3 on AlGaN/GaN heterostructure field-effect transistor,”
    Thin Solid Films, vol. 516, no. 18, pp. 6483-6486, 2008.
    [44]Allen J. Bard and Larry R. Faulkner, “Electrochemical methods fundamental and applications 2nd edition,”John Wiley & Son, 2001.
    [45]Charles Kittel, “Introduction to solid state physics 8th edition,” John Wiley & Son, 2005.
    [46] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the
    source of electrons in AlGaN/GaN heterostructure field effect transistors” Appl. Phys. Lett., vol. 77, no. 2, pp. 250-252, 2000.
    [47]D. Mistele, O. Katz, A. Horn, G. Bahir and J. Salzman, “Engineering and impact of surface states on AlGaN/GaN-based hetero
    field effect transistors,” Semicond. Sci. Technol., vol. 20, no. 9, pp. 972-978, 2005.
    [48]J. Kuzmil, P. Javorka, A.Alam, M. Marso, and M. Heuken, “Investigation of self-heating effects in AlGaN/GaN HEMTs,”
    Proc. EDMO, pp. 21-26, 2001.
    [49]R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-heating in high-power AlGaN/GaN HFET's," IEEE Electron Device Lett.,
    vol. 19, no. 3, pp. 89-91, 1998.
    [50]Z. H. Liu, G. I. Ng, H. Zhou, S. Arulkumaran, and Y. K. T. Maung, “Reduced surface leakage current and trapping effects in
    AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation,”Appl. Phys. Lett., vol. 98, no. 113506, 2011.
    [51]Fan Ren, John C. Zolper, “Wide energy bandgap electronic devices,” World Scientific Publishing, 2003.
    [52]Po-Hsien Lai, Ssu-I Fu, Yan-Ying Tsai, Chih-Hung Yen, Hung Ming Chuang, Shiou-Ying Cheng, and Wen-Chau Liu,
    “Thermal-stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. Device Mater. Reliab., vol. 6,
    no.1, pp. 52-59, 2006.
    [53]Naohiro Tsurumi, Hiroaki Ueno, Tomohiro Murata, Hidetoshi Ishida, Yasuhiro Uemoto, Tetsuzo Ueda, Kaoru Inouem and
    Tsuyoshi Tanaka, “AlN passivation over AlGaN/GaN HFETs for surface heat spreading,” IEEE Trans. Electron Devices, vol. 57,
    no. 5, pp. 980-985, 2010.
    [54]J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and Y. C. Yang, “High-power density and high gain δ-doped
    In0.425Al0.575As/In0.425Ga0.575As low voltage for operation,” J. Electrochem. Soc., vol. 154, pp. 189-190, 2007.
    [55]Frank Schwierz, Juin J. Liou, “Modern microwave transistors theory, design, and performance,” Wiley-Interscience, 2003.
    [56]Frank Ellinger, “Radio frequency integrated circuits and technologies,” Springer, 2007.
    [57]Zhi Hong Liu, Geok Ing Ng, Subramaniam Arulkumaran, Ye Kyaw Thu Maung, Khoon Leng Teo, Siew Chuen Foo,
    and Vicknesh Sahmuganathan, “Comprehensive study on the bias-dependent equivalent circuit elements affected by PECVD SiN
    passivation in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 473-479, 2011.
    [58]Inder J. Bahl, “Fundamentals of RF and microwave transistor amplifiers,” John Wiley & Son, 2009.
    [59]W. Lu, V. Kumar, E. L. Piner, and I. Adesida, “DC, RF and microwave noise performance of AlGaN/GaN field effect
    transistors dependence of aluminum concentration,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1069-1074, 2003.
    [60]H. Fukui, “ The noise performance of microwave transistors,” IEEE Trans. Electron Devices, vol. ED-13, pp. 329-341, 1986.
    [61]H. Fukui, “Design of microwave GaAs MESFET’s for broad-band low-noise amplifiers,” IEEE Electron Device Lett.,
    vol. ED-37, pp. 67-78, 1990.
    [62]D. Delagebeaudeuf, “A new relationship between the Fukui coefficient and optimal current value for low-noise operation of
    field-effect transistors,” IEEE Electron Device Lett., vol. EDL-6, pp. 444-445, 1985.
    [63]F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys.,
    vol. 44, no. 5, pp. 479-532, 1981.
    [64]Josef Sikula, Michael Levinshtein, “Advanced experimental methods for noise research in nanoscale electronic devices,”
    Springer Science, 2005.
    [65]A. Balandin, S. V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne, and C. R. Viswanathan, “Low flicker-noise GaN/AlGaN
    heterostructure field-effect transistors for microwave communication,” IEEE Trans. Microw. Theory and Tech., vol. 47, no. 8, 1999.
    [66]Christopher Sanabria, “Noise of AlGaN/GaN HEMT and oscillators,” Ph. D. thesis, University of California Santa Barbara, 2006.
    [67]Y. L. Chiou, C. S. Lee, and C. T. Lee, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors with ZnO gate
    layer and (NH4)2SX surface treatment,” Appl. Phys. Lett., vol. 97, no. 24, 2010.
    [68]S. Arulkumaran and G. I. Ng, “Effect of gate-source and gate-drain Si3N4 passivation on current collapse in AlGaN/GaN high
    electron mobility transistor on silicon,” Appl. Phys. Lett., vol. 90, no. 17, 2007.
    [69]H. K. Lin, H. L. Yu, and F. H. Huang, “Performance improvement of AlGaN/GaN HEMTs using two steps silicon nitride
    passivation,” Microw. Opt. Technol. Lett., vol. 52, no. 7, 2010.
    [70]H. Leier, A. Wieszt, R. Behtash, H. Tobler, A. Vescan, R. Dietrich, A. Schurr, H. Sledzik, JCH. Birbeck, RS. Balmer, and
    T. Martin, “RF power performance of passivated AlGaN/GaN HFETs grown on SiC and sapphire,” Proc. GAAS Conf.
    pp. 49-52, 2001.
    [71]W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs,”
    Solid-State Elctron., vol. 46, no. 9, pp. 1441-1444, 2002.
    [72]Sarbani Basu, Pramod K. Singh, Po-Wen Sze, and Yeong-Her Wang, “AlGaN/GaN metal-oxide-demiconductor high electron
    mobility transistor with liquid phase deposited Al2O3 as gate dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. H947-H951, 2010.
    [73]Y. Z. Yue, Y. Hao, Q. Feng, J. C. Zhang, X. H. Ma, and J. Y. Ni, “Study of GaN MOS-HEMT using ultrathin Al2O3 dielectric
    grown by atomic layer deposition,” Sci. China Ser. E-Technol. Sci., vol. 52, no. 2, pp. 2762-2766, 2009.
    [74]Z. W. Bi, Q. Feng, Y. Hao, D. H. Wang, X. H. Ma, J. C. Zhang, S. Quan, and S. R. Xu, “AlGaN/GaN MIS-HEMT using NbAlO
    dielectric layer grown by atomic layer deposition,” Sci. China Ser. B-Chem., vol. 19, no.7, 2010.
    [75]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate structure approach toward normally-off high-voltage
    AlGaN/GaN HEMT for power electronics,”IEEE Trans. Electron Devices, vol. 53, no. 2, 2006.
    [76]Nariaki Ikeda, Jiang Li, and Seikoh Yoshida, “Normally-off operation power AlGaN/GaN HFET” Proceeding of ISPSD’
    2004, pp. 369-372, 2004.
    [77]“Normally-off operation power AlGaN/GaN HFETs for high power applications,” Electrochem. Solid State Lett., vol. 14,
    no. 5, 2011.
    [78]W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, “Recessed- gate enhancement- mode GaN HEMT with high threshold voltage,”
    Electron. Lett., vol. 41, no. 7, pp. 449-450, 2005.
    [79]H. K. Lin, F. H. Huang, H. L. Yu, “DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depth,” Solid-
    State Elctron., vol. 54, pp. 582-585, 2002.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE