| 研究生: |
黃世瑋 Haung, Sei-Wey |
|---|---|
| 論文名稱: |
正交旋轉雙通道設置波浪形側壁及表面斜肋之實驗熱傳研究 An experimental study of heat transfer in an orthogonal-mode rotating two-pass passage with undulant sidewalls and angled surface ribs |
| 指導教授: |
張始偉
Chang, Shyy-Woei 楊澤民 Yang, Joe-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 波浪帶肋通道 、旋轉 、燃氣渦輪機轉子葉片冷卻 |
| 外文關鍵詞: | Rotating Channel, Ribbed Wavy Channel, Rotation, Gas Turbine Rotor Blade Cooling |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過對燃氣渦輪機轉子葉片中段區域進行冷卻,測量具有成角度斜肋之波浪通道整體端壁紐塞數與范寧摩擦係數,從而評估空氣熱性能係數之新穎複合熱傳增強方法。測試的雷諾數、旋轉數和浮力數分別在5000-15000、0-0.4、0-0.183範圍內。受肋條及波浪側壁共同作用,靜態通道的端壁平均紐塞數提高到Dittus-Boelter標準的4.77-4.90倍。沿流場方向的紐塞數與通過波浪側壁的喉部及隆起處流體的加速及減速具有高度相關。透過旋轉,在靜態通道中的高熱傳區域分別收縮與擴張於旋轉情況的穩定及不穩定壁上。最差熱傳效率是發生在旋轉數0.05時,迎風壁與背風壁發現的熱傳效率分別為靜態通道的0.77倍和0.82倍。透過將旋轉數由0增加到0.4,穩定壁上的紐塞數會先減小,後隨旋轉數增加;但范寧摩擦係數則為不斷增加。在旋轉不穩定壁上,紐塞數與摩擦係數均隨旋轉數增強而增加。當旋轉通道中浮力相對強度增強時,迎風壁與背風壁上的局部紐塞數會增加,而對其分佈趨勢影響可以忽略不計。通過增加雷諾數會使得旋轉通道熱性能係數降低並遵循紐塞數相對於旋轉數的變化趨勢。為幫助相關應用,設計兩組實驗相關公式,以評估此波浪雙通帶肋通道的區域平均紐塞數和范寧摩擦係數。
The heat transfer enhancement of the internal cooling channel in a gas turbine rotor blade plays an important role for power density and thermodynamic efficiency. The present experimental study investigates the aerothermal performance of the radially rotating two-pass wavy channel with angled ribs on the two opposite flat channel endwalls. The detailed Nusselt number (Nu) distributions on the leading (LE) and trailing (TE) rotating endwalls and the Fanning friction factor (f) at the test conditions specified by Reynolds (Re), rotation (Ro) and buoyancy (Bu) numbers in the respective ranges of 5,000-15000, 0-0.4, and 0-0.183. On each of the leading and trailing endwalls, the inlet leg (IL), turning region (TR), outlet leg (OL) and the entire endwall area (A) are specified to evaluate the regionally averaged Nusselt numbers in terms of , , , and respectively. To highlight the heat-transfer and pressure-drop augmentations, the Nusselt numbers and Fanning friction factors evaluated at the same tested Re by the Dittus-Boelter (Nu∞) and Blasius (f∞) correlations are selected as the reference to normalize Nusselt numbers and Fanning friction factors detected from the present test channel symbolized as Nu0 and f0 at the static conditions and Nu and f at the rotating conditions. The ratios of Nu/Nu0 and f/f0 hence indicate the rotating-to-static Nusselt number and Fanning friction factor ratios. The efficiency of the present enhanced test channel is indexed by the thermal performance factor (TPF) evaluated at the constant pumping power condition.
In the static channel at the Reynolds numbers of 5000-15000, the ratios of /Nu∞, /Nu∞, /Nu∞, and /Nu∞ are in the range of 4.85-4.63, 4.15-3.98, 5.34-5.23, and 4.9-4.77 respectively. The corresponding f0/f∞ ranges for LE, TE, inner sidewall, outer sidewall and for the average endwall are 35.06-38.70, 35.12-38.76, 31.59-34.64, and 32.79-34.42 respectively. The TPF values at the tested Re from 5000 to 15000 are raised to 1.53-1.45. Affecting by the Coriolis force and buoyancy force at the current tested Re, Ro and Bu, the ratios of Nu/Nu0 for the IL, TR, OL regions and over the entire endwall on the rotating LE (TE) are 0.77-1.81 (1.26-2.01), 1.06-2.06 (1.05-1.93) ), 1.06-2.13 (0.82-1.79) and 1.03-2 (1.02-1.9) respectively. The corresponding f/f0 ratios of LE, TE, inner wall, outer wall and channel endwall fall in the range of 1.1-1.66, 1.12-1.74, 1.07-1.6, 1.10-1.73 and 1.11-1.68 respectively. The TPF values at all the rotating test condition are increased to 2.39-1.48.
The worst heat transfer spots appear at the entry corners of the sharp bend on the rotating LE and TE at the rotation number of 0.05. At such worst condition on the spots with the lowest Nu, the Nu/Nu0 ratios over the rotating LE and TR are reduced to 0.51 and 0.56 respectively.
Two sets of empirical correlations are developed to determine the regionally average Nusselt number and the Fanning friction factor of present rotating channel.
[1] J.H. Wagner, B.V. Johnson, F.C. Kopper, Heat transfer in rotating serpentine passages with smooth walls, Transactions of ASME J. Turbomachinery 113 (1991) 321-330.
[2] J.H. Wagner, B.V. Johnson, R.A. Graziani, F.C. Yeh, Heat transfer in rotating serpentine passages with trips normal to HTE flow, Transactions of ASME J. Turbomachinery 114 (1992) 847-858.
[3] B.V. Johnson, J.H. Wagner, G.D. Steuber, F.C. Yeh, Heat transfer in rotating serpentine passages with trips skewed to HTE flow, Transactions of ASME J. Turbomachinery 116 (1994) 113-123.
[4] T.J. Hajek, J.H. Wagner, B.V. Johnson, A.W. Higgins, G.D. Steuber, Effects of rotation on coolant passage heat transfer, NASA Contract Report 4396, Vol. I, 1991.
[5] B.V. Johnson, J.H. Wagner, G.D. Steuber, Effects of rotation on coolant passage heat transfer, NASA Contract Report 4396, Vol. II, 1993.
[6] W.D. Morris, Heat Transfer and Fluid Flow in Rotating Coolant Channels, John Wiley & Sons, ISBN-10 : 0471101214, 1982.
[7] W.D. Morris and S.W. Chang, An experimental study of heat transfer in a simulated turbine blade cooling passage, Int. J. Heat and Mass Transfer 40 (1997) 3703-3716.
[8] T.-M. Liou, S.W. Chang, C.-C. Yang, Y.-A. Lan, HTErmal performance of a radially rotating twin-pass smooth-walled parallelogram channel, Transactions of ASME J. Turbomachinery 136 (2014) 121007 1-14.
[9] J. Lei, S.-J. Li, J.-C. Han, L. Zhang, H.-K. Moon, Effect of a turning vane on heat transfer in rotating multipass rectangular smooth channel, J. HTErmophysics and heat transfer 28 (2014) 417-427.
[10] Y. Li, H. Deng, G. Xu, S. Tian, Heat transfer investigation in rotating smooth square U-duct with different wall-temperature ratios and channel orientations, Int. J. Heat Mass Transfer 89 (2015) 10-23.
[11] S.W. Chang, P.-S. Wu, C.-C. Chen, C.-C. Wang, Y.-R. Jiang, S.-H. Shih, HTErmal performance of radially rotating two-pass S-shaped zig-zag channel, Int. J. Heat Mass Transfer 115 (2017) 1011-1031.
[12] Y. Li, G. Xu, H. Deng, L. Qiu, X. Yu, Effects of coolant mass flow rate ratio on heat transfer in a two-inlet rotating wedge-shaped channel, Int. J. Heat Mass Transfer 96 (2016) 353-361.
[13] Y. Li, H. Deng, Z. Tao, G. Xu, Y. Chen, Heat transfer characteristics in a rotating trailing edge internal cooling channel with two coolant inlets, Int. J. Heat Mass Transfer 105 (2017) 220-229.
[14] J.A. Parsons, J.-C. Han, Y. Zhang, Effect of model orientation and wall heating condition on local heat transfer in a rotating two-pass square channel with rib turbulators, Int. J. Heat Mass Transfer 38 (1995) 1151-1159.
[15] Y.M. Zhang, J.-C. Han, J.A. Parsons, C.P. Lee, Surface heating effect on local heat transfer in a rotating two-pass square channel with 60 deg angled rib turbulators, Transactions of ASME J. Turbomachinery 117 (1995) 272-280.
[16] W. D. Morris, and K.F. Rahmat-Abadis, Convective heat transfer in rotating ribbed tubes, Int. H. Heat and Mass Transfer 39 (1996) 2253-2266.
[17] T.S. Griffith, L. Al-Hadhrami, J.-C. Han, Heat transfer in rotating rectangular cooling channels (AR=4) with dimples, Transactions of ASME J. Turbomachinery 125 (2003) 555-564.
[18] L. Al-Hadhrami, J.-C. Han, Effect of rotation on heat transfer in two-pass square channels with five different orientations of 450 angled rib turbulators, Int. J. Heat and Mass Transfer 46 (2003) 653-669.
[19] E. Lee, L.M. Wright, J.-C. Han, Heat transfer in rotating rectangular channels with V-shaped and angled ribs, J. HTErmophysics and heat transfer 19 (2005) 48-56.
[20] W.-L. Fu, L.M. Wright, J.-C. Han, Heat transfer in two-pass rotating rectangular channels (AR=2:1) with discrete ribs, J. HTErmophysics and heat transfer 20 (2006) 569-582.
[21] K.M. Kim, D.H. Lee, H.H. Cho, Detailed measurement of heat/mass transfer and pressure drop in a rotating two-pass duct with transverse ribs, Heat and Mass Transfer 43 (2007) 801-815.
[22] A.K. Saha, and S. Acharya, Turbulent heat transfer in ribbed coolant passages of different aspect ratios: parametric effects, Transactions of ASME J. Heat Transfer 129 (2007) 449-463.
[23] F. Zhou, and S. Acharya, Heat transfer at high rotation numbers in a two-pass 4:1 aspect ratio rectangular channel with 45 deg skewed ribs, Transactions of ASME J. Turbomachinery 130 (2008) 021019 1-12.
[24] A. Rallabandi, J. Lei, J.-C. Han, S. Azad, C.-P. Lee, Heat transfer measurements in rotating blade–shape serpentine coolant passage with ribbed walls at high Reynolds numbers, Transactions of ASME J. Turbomachinery 136 (2014) 091004 1-9.
[25] Y. Li, H. Deng, G. Xu, S. Tian, Heat transfer and pressure drop in a rotating two-pass square channel with different ribs at high rotation numbers, Proceedings of ASME Turbo Expo 2015, GT2015-44019, June 15-19, 2015, Montréal, Canada.
[26] S.W. Chang, T.-M. Loiu, J.Y. Gao, HTErmal performance of rotating two-pass ribbed channel with wavy sidewalls, Experimental HTErmal and Fluid Science 68 (2015) 412-434.
[27] H. Deng, Y. Li, Z. Tao, G. Xu, S. Tian, Pressure drop and heat transfer performance in a rotating two-pass channel with staggered 45-deg ribs, Int. J. Heat Mass Transfer 108 (2017) 2273-2282.
[28] T.-M. Liou, S.W. Chang, Y.-A. Lan, S.-P. Chan, Isolated and coupled effects of rotating and buoyancy number on heat transfer and pressure drop in a rotating two-pass parallelogram channel with transverse ribs, Transactions of ASME J. Heat Transfer 140 (2017) 032001 1-14.
[29] H.-W. Wu, H. Zirakzadeh, J.-C. Han, L. Zhang, H.-K. Moon, Heat transfer in a rib and pin roughened rotating multipass channel with hub turning vane and trailing-edge slot ejection, Transactions of ASME J. HTErmal Science and Engineering 10 (2018) 021011 1-11.
[30] S.C. Siw, M.K. Chyu, M.A. Alvin, Heat transfer and pressure loss characteristics of zig-zag channel with rib-turbulators, ASME Turbo Expo, Texas, USA, June 3-7, GT2013-95407, 2013.
[31] S.C. Siw, M.K. Chyu, M.A. Alvin, Heat transfer enhancement and pressure loss characteristics of zig-zag channel with dimples and protrusions, ASME Turbo Expo, Montreal, Canada, June 15-19, GT2015-43825, 2015.
[32] P.-S. Wu, S.W. Chang, C.-S. Chen, C.-C. Weng, Y.-R. Jiang, S.-H. Shih, Numerical flow and experimental heat transfer of S-shaped two-pass square channel with cooling applications to gas turbine blade, Int. J. Heat Mass Transfer 108 (2017) 362-373.
[33] S.W. Chang, P.-S. Wu, W. L. Cai, C.-H. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, Int. J. Heat and Mass Transfer 166 (2021) 120809 1-21.
[34] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. J. Heat Mass Transfer 23 (1980) 1127-1135.
[35] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mechanical Engineering 75 (1953) 3-8.
[36] Ma, C., Chen, X., Wang, J., Zang, S., & Ji, Y, An Experimental Investigation of Heat Transfer Characteristics for Steam Cooling in a Rectangular Channel with Parallel Ribs, Journal of Thermal Science Vol.23, No.5 (2014) 454-464.