簡易檢索 / 詳目顯示

研究生: 朱昭憲
CHU, CHAO HSIEN
論文名稱: (Mg0.95Zn0.05)4Nb2O9陶瓷材料之微波介電 特性改善與應用
Improved Microwave Dielectric Properties and Applications of (Mg0.95Zn0.05)4Nb2O9 Ceramic Material
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: 微波介電特性陶瓷材料
外文關鍵詞: Microwave Dielectric Properties, Ceramic Material
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討(Mg0.95Zn0.05)4Nb2O9介電材料之共振頻率溫度漂移係數改善方法。為了將其負的共振頻率溫度飄移係數調整至趨近於零,我們添加具正值共振頻率溫度飄移係數的材料SrTiO3 (+1700 ppm/℃)、CaTiO3 (+800 ppm/℃)、Ca0.8Sr0.2TiO3 (+991 ppm/℃)。經由實驗的結果,我們得知0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3有最佳的微波介電特性,其介電常數約為21.2、Q×f約為136,000 GHz (at 9.3 GHz)及τf約為–5 ppm/℃。
    此外,本論文將分別以 FR4、Al2O3及0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3作為基板來設計一混合耦合帶通濾波器,濾波器的規格為:中心頻率2.4 GHz、頻寬為8%,並使用電磁模擬軟體HFSS來進行電腦模擬。比較使用不同基板的濾波器響應以及元件尺寸,可以發現應用於同一電路上,具有高介電常數和高品質因素的自製基板可以達到縮小電路面積的效果,且有更好的濾波特性。

    The improvement of τf of (Mg0.95Zn0.05)4Nb2O9, have been investigated. In order to adjust their negative τf, SrTiO3、CaTiO3 and Ca0.8Sr0.2TiO3 which have positive τf had been add. The experiment result showed that 0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3 have the best microwave dielectric properties, it’s K ~ 21.2, Q×f ~ 136,000 GHz (measured at 9.3 GHz) and τf ~ –5 ppm/℃.
    Besides, a bandpass filter using mixed coupling structure have been designed on FR4、Al2O3 and 0.6(Mg0.95Zn0.05)4Nb2O9–0.4SrTiO3 substrates. The band-pass frequency is 2.4 GHz, the bandwidth is 8% and simulated by electromagnetic simulation. We could find that with the higher dielectric constant and Q×f , our filter could diminish the scale of size and demonstrate better frequency response.

    摘要...I Abstract ...II 目錄...III 表目錄...VI 圖目錄...VII 第一章 緒論...1 1-1 前言...1 1-2 研究目的...1 第二章 介電材料原理...3 2-1 材料的燒結原理...3 2-1-1 陶瓷材料燒結的擴散機制...3 2-1-2 陶瓷材料燒結的過程...4 2-1-3 燒結的種類...5 2-2 微波介電材料之介電特性分析...7 2-2-1 介電常數(Dielectric constant:K、εr)...8 2-2-2 介電品質因數(Quality factor:Q)...11 2-2-3 共振頻率之溫度係數(τf)...13 2-3 介電共振器(Dielectric Resonator, DR)原理 ...14 2-4 Corundum結構...18 2-5 鈣鈦礦之結構...20 第三章 微帶線及濾波器之原理...22 3-1 濾波器的原理...22 3-1-1 濾波器的簡介...22 3-1-2 濾波器之通帶頻段及頻率響應...22 3-2 微帶線原理...26 3-2-1 微帶傳輸線介紹...26 3-2-2 微帶線傳輸組態...26 3-2-3 微帶線各項參數公式計算及考量...27 3-2-4 微帶線的不連續效應...29 3-2-5 微帶線的損失...36 3-3 微帶線諧振器種類...37 3-4 Tapped Line輸入及輸出點的設計...40 3-5 共振器間的耦合形式...42 3-5-1 電場耦合...42 3-5-2 磁場耦合...46 3-5-3 混合耦合...49 3-6 四分之一波長的阻抗轉換器與開路殘段(open stub)...52 3-7 T型共振器設計...53 3-8 使用U型共振器的混合耦合帶通濾波器(反對稱式饋入)...54 第四章 實驗程序與量測方法...57 4-1 微波介電材料的製備...57 4-2 微波介電材料的特性分析與量測...59 4-2-1 X-Ray(XRD)分析...59 4-2-2 掃瞄式電子顯微鏡(SEM)分析...59 4-2-3 密度之量測...59 4-2-4 微波介電特性之量測...60 4-3 濾波器的製作與量測...66 4-3-1 濾波器製作...66 4-3-2 濾波器量測...67 第五章 實驗結果與討論...69 5-1 (1–x)(Mg0.95Zn0.05)4Nb2O9–xSrTiO3微波特性之探討...69 5-2 (1–x)(Mg0.95Zn0.05)4Nb2O9–xCaTiO3微波特性之探討...81 5-3 (1–x)(Mg0.95Zn0.05)4Nb2O9–x(Ca0.8Sr0.2)TiO3微波特性之探 討...94 5-4 濾波器的模擬與實作...107 5-4-1 使用FR4(玻璃纖維基板)之模擬與實作結果...107 5-4-2 使用Al2O3之模擬與實作結果...110 5-4-3 使用自製基板(0.6MZN–0.4ST)之模擬與實作結果...112 第六章 結論...117 參考文獻...119

    [1] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst. Mining. Met. Engrs, pp.878-905, 1948.

    [2] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470.

    [3] Schaffer Saxena Antolovich Sanders Warner,“The Science and Design of Engineering Materials”,Chap3.

    [4] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003.

    [5] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.

    [6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).

    [7] J. W. Cahn, R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).

    [8] W. J. Huppmann, G. Petzow, “Sintering Processes,” Plenum Press, (1979).

    [9] R. M. German, “Liquid Phase Sintering,” Plenum Press, (1985).

    [10] J. H. Jean, C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).

    [11] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 391–398 (1939).

    [12] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,”

    [13] D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).

    [14] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.

    [15] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.

    [16] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.

    [17] S. J. Penn, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina”, J. Am. Ceram. Soc.,Vol.80, pp.1885-1888, 1997.

    [18] N. Kumada, K. Taki, N.Kinomura,“Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9”, materials research bulletin Vol.35, 2000.

    [19] T. Manabe, I. Yamaguchi. W.Kondo, S. Mizuta and T.Kumagai,“Topotaxy of Corundum-Type Tetramagnesium Diniobate and Ditantalate Layers on Rock-Salt-Type Magnesium Oxide Substrates”, J. Am. Ceram. Soc., Vol.82 (1999)pp.2061-2065

    [20] D.C. Sun1, S. Senz, D. Hesse*,“Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions”, Journal of the European Ceramic Society Vol.26(2006)pp.3181–3190

    [21] H. T. Ogawaa, A.K. Kana, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss” , Journal of the European Ceramic Society Vol.23 (2003)pp.2485–2488

    [22] 余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).

    [23] 吳朗, “電工材料,” 滄海書局, (1998).

    [24] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits,” McGraw-Hill, (1990).

    [25] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.

    [26] J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).

    [27] G. Kompa, “Practical Microstrip Design and Applications,” Artech House, (2005)

    [28] 張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).

    [29] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).

    [30] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).

    [31] E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).

    [32] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques”, IEEE Transactions on, vol. 27, pp. 44-50, 1979.

    [33] S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.

    [34] Alexander Hennings, Elena Semouchkina, Amanda Baker, and George Semouchkin, ”Design Optimization and Implementation of Bandpass Filters With Normally Fed Microstrip Resonators Loaded by High-Permittivity Dielectric”,IEEE Trans. Microwave Theory Tech ,Vol.54 ,No.3 ,pp. 1253-1261, March 2006

    [35] M. Matsuo, H. Yabuki and M. Makimoto, “The Design Of a Half-wavelength Resonator BPF with Attenuation Poles at Desired Frequencies”, IEEE MIT-S Digest pp.1181-1184,2000

    [36] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp.473-476, 1985.

    [37] Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE. Trans. Micr- owave Theory Tech., MTT-33, 586-592, 1985.

    [38] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microwave Theory Tech., MTT-28, 1077-1085, 1980.

    [39] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.

    無法下載圖示 校內:2020-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE