研究生: |
詹穎仁 Chan, Ying-Jen |
---|---|
論文名稱: |
利用兔子實驗比較不同表面處理的植體,經細菌污染並清潔後,其骨整合的可能性 Comparison of the osseointegration on different implant surfaces after bacterial contamination and cleaning: a rabbit study |
指導教授: |
袁國
Yuan, Kuo |
共同指導教授: |
李澤民
Lee, Tzer-Min |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 植體表面 、植體周圍炎 、骨整合 |
外文關鍵詞: | implant surfaces, peri-implantitis, osseointegration |
相關次數: | 點閱:114 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用可骨整合的植體來取代缺失的牙齒,已成為牙醫臨床一般的治療。而植體周圍炎則是植體因發炎而喪失骨整合,並伴隨膿血產生。有文獻指出病患植牙後9-14年發生植體周圍炎的比率大約是16%。再生骨整合則是預期在植體發炎後,可以重建因發炎而喪失的骨頭與骨整合。因此我們想探討不同表面處理的植體對於被細菌污染並清潔後,其骨整合是否有影響。
首先製作四種不同表面處理的植體:machined (M), hydroxyapatite plasma spray (HAPS), sand-blasted, large grit, acid-etched (SA), and Titanium anodic oxide (TAO)。每一種表面處理的植體再分成對照組與實驗組。在實驗組中,消毒過後的植體先用Prevotella intermedia污染2個星期,再模擬臨床治療植體周圍炎的方法,使用含生理食鹽水的棉球清潔與沖洗。在同一兔子的股骨上分實驗組與對照組,並各自植入不同表面處理的植體,總共使用10隻兔子。6星期癒合後,五隻兔子作股骨切片觀察各組骨頭與植體的接觸,與新骨生成範圍的差異。另五隻兔子作功能性的扭力測試。
藉由這個實驗,可以知道不同的植體表面處理,會造成不同的表面型態,組成成分和表面粗糙度。而在對照組中,不論是在扭力測試,骨頭與植體的接觸與新骨生成範圍,較粗糙的HAPS和SA表面都比較平滑的TAO和M明顯得好。而就TAO與M表面來說,可能TAO表面有較多的鈣磷沉積,與較多的孔洞,所以在扭力測試,骨頭與植體的接觸與新骨生成範圍都比M來的佳。另一方面,從實驗組看來,較粗糙的HAPS和SA表面,在被細菌污染後,即使是經過清潔,他們在骨頭與植體的接觸與新骨生成範圍都明顯的降低。甚至比較光滑的TAO 和M這兩組還差。
就臨床上來,粗糙表面的植體仍是較佳的植牙選擇,但須注意的是,發生植體周圍炎的粗糙表面植體,既使經過表面清潔其骨整合的結果仍較光滑表面的差。除此之外,不同的骨缺損大小或型態,手術方式,再生材料和手術者的技術。都會影響治療植體周圍炎的結果,更需進一步的實驗釐清。
The use of osseointegrated implants has become a common treatment procedure in the replacement of missing teeth. The loss of osseointegration of the implant combined with bleeding and/or pus on probing is defined as peri-implantitis. Peri-implantitis has been reported to occur in 16% of patients treated with implants after 9–14 years of function. Re-osseointegration can be defined as the establishment of de novo bone formation and de novo osseo¬integration to a portion of an implant that suffered loss of bone-to-implant contact (BIC) and became exposed to microbial colonization. This in vivo study is aimed to realize that what kinds of implant surfaces could have better osseointegration after bacteria contamination and cleaning.
Four different implant surfaces were manufactured: machined (M), hydroxyapatite plasma spray (HAPS), sand-blasted, large grit, acid-etched (SA), and Titanium anodic oxide (TAO). Each surface was subdivided into control group and test group. In the test group, after the disinfection of implants, we colonized these implants with Prevotella intermedia for 2 weeks. These test implants were cleaned with cotton pellets soaked in saline and irrigate. The procedures mimicked the clinical decontamination for peri-implantitis. After that, we implanted control group (including four different surfaces) into one femur of the New Zealand rabbit and test group into the other femur of the same rabbit. Ten rabbits were used totally. After 6 weeks of healing, five rabbits were sacrificed for comparing the bone to implant contact and bone area, and others for functional remove torque value (RTV) measurement.
With the limitation of this animal study, it was concluded that different surface treatment produced different surface topography, composition and roughness. In the control group, the rougher HAPS and SA surfaces were significantly superior to the smoother M surface in the RTV, BIC and bone area analysis. The TAO surface was better than the M surface in the RTV, BIC and bone area; perhaps they had chemically more O, Ca and P elements and physically more roughness and porous texture. The rougher surfaces, such as HAPS and SA, showed statistically significant reduction in the BIC and bone area after bacterial challenge and decontamination, and they also exhibited lower BIC and bone area than the smoother TAO and M surfaces.
According to this study, the rougher surface implant may be a better choice for clinical practice. It should be noted that the peri-implantitis would enhance the destruction around the rougher implant, even after decontamination. There are also other possible factors for the treatment outcome, such as different defect size and shape, surgical methods, regenerative materials and surgeon technique. Further study is needed to distinguish the variables for treating peri-implantitis.
References
Adell, R., Lekholm, U., Rockler, B., & Branemark, P.I., A 15-Year Study of Osseointegrated Implants in the Treatment of the Edentulous Jaw. Int J Oral Maxillof 10 (6), 387-416 (1981).
Albrektsson, T., Branemark, P.I., Hansson, H.A., & Lindstrom, J., Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52 (2), 155-170 (1981).
Albrektsson,T.& Jacobsson, M.,Bone-Metal Interface in Osseointegration. J Prosthet Dent 57 (5), 597-607 (1987).
Albrektsson T. Isidor F. Consensus report: implant therapy. Proceedings of the 1st European Workshop on Periodontology,
Berlin: Quintessence.365–369 (1994).
Albrektsson, T. & Wennerberg, A., Oral implant surfaces: Part 1 - Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17 (5), 536-543 (2004).
Albrektsson, T. & Wennerberg, A., Oral implant surfaces: Part 2 - Review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17 (5), 544-564 (2004).
Alhag, M., Renvert, S., Polyzois, I., & Claffey, N., Re-osseointegration on rough implant surfaces previously coated with bacterial biofilm: an experimental study in the dog. Clin Oral Implants Res 19 (2), 182-187 (2008).
Berglundh, T., Persson, L., & Klinge, B., A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 29, 197-212 (2002).
Breine, U., Branemark, P.I., & Johanson, B., Regeneration of bone marrow. A clinical and experimental study (preliminary report). Acta Chir Scand 122, 125-130 (1961).
Brett, P.M. et al., Roughness response genes in osteoblasts. Bone 35 (1), 124-133 (2004).
Buser, D. et al., Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45 (2), 75-83 (1999).
Buser, D. et al., Influence of Surface Characteristics on Bone Integration of Titanium Implants - a Histomorphometric Study in Miniature Pigs. J Biomed Mater Res 25 (7), 889-902 (1991).
Chang, Chin-Shan. 微粗糙表面處理對矯正用微植體錨定的影響 國立成功大學 口腔醫學研究所 碩士論文 2007
Coelho, P.G. et al., Basic Research Methods and Current Trends of Dental Implant Surfaces. J Biomed Mater Res B 88B (2), 579-596 (2009).
Coelho, P.G. & Lemons, J.E., Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces. J Biomed Mater Res A 90A (2), 351-361 (2009).
Dennison, D.K., Huerzeler, M.B., & Caffesse, R.G., Decontamination of Different Implant Surfaces by Various Treatment Modalities. J Dent Res 73, 138-138 (1994).
Dennison, D.K., Huerzeler, M.B., Quinones, C., & Caffesse, R.G., Contaminated implant surfaces: an in vitro comparison of implant surface coating and treatment modalities for decontamination. J Periodontol 65 (10), 942-948 (1994).
Ehrenfest, D.M.D., Coelho, P.G., Kang, B.S., Sul, Y.T., &
Albrektsson, T., Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28 (4), 198-206 (2010).
Esposito, M., Hirsch, J.M., Lekholm, U., & Thomsen, P., Biological factors contributing to failures of osseointegrated oral implants - (II). Etiopathogenesis. Eur J Oral Sci 106 (3), 721-764 (1998).
Ferreira, S.D., Silva, G.L.M., Cortelli, J.R., Costa, J.E., & Costa, F.O., Prevalence and risk variables for peri-implant disease in Brazilian subjects. J Clin Periodontol 33 (12), 929-935 (2006).
Fransson, C., Lekholm, U., Jemt, T., & Berglundh, T., Prevalence of subjects with progressive bone loss at implants. Clin Oral Implan Res 16 (4), 440-446 (2005).
Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L.T., & Hjortinghansen, E., Anchorage of Tio2-Blasted, Ha-Coated, and Machined Implants - an Experimental-Study with Rabbits. J Biomed Mater Res 29 (10), 1223-1231 (1995).
Hansson, S. & Norton, M., The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 32 (8), 829-836 (1999).
Hastings G, Ducheyne P. Macromolcular Biomaterials. CRC Press, Boca Raton, FL, 1984.
Heitz-Mayfield, L.J.A. & Lang, N.P., Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000 53, 167-181 (2010).
Hench, L.L., Biomaterials. Science 208 (4446), 826-831 (1980).
Hench, L.L., Bioceramics. J Am Ceram Soc 81 (7), 1705-1728 (1998).
Hench, L.L., Boccaccini, A.R., Day, R.M., & Gabe, S.M., Third generation gene activating biomaterials. Mater Sci Forum 426-4, 179-184 (2003).
J
ohn, V., Chen, S., & Parashos, P., Implant or the natural tooth a contemporary treatment planning dilemma? Aust Dent J 52 (1), S138-S150 (2007).
J
unker, R., Dimakis, A., Thoneick, M., & Jansen, J.A., Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implan Res 20, 185-206 (2009).
Kolonidis, S.G. et al., Osseointegration on implant surfaces previously contaminated with plaque. An experimental study in the dog. Clin Oral Implan Res 14 (4), 373-380 (2003).
Kung, Kuan-chen. 鈦金屬陽極化表面處理之研究 國立成功大學 口腔醫學研究所 碩士論文 2007
Leonhardt, A., Renvert, S., & Dahlen, G., Microbial findings at failing implants. Clin Oral Implan Res 10 (5), 339-345 (1999).
Li, Y., Wong, C., Xiong, J., Hodgson, P., & Wen, C., Cytotoxicity of Titanium and Titanium Alloying Elements. J Dent Res 89 (5), 493-497 (2010).
Lillie, R.D., Pizzolato, P., & Vacca, L.L., Salt Zenker, a stable, nonhemolytic, formaldehyde-free fixative: the addition of salt to other acetic acid fixatives. Am J Clin
Pathol 59 (3), 374-375 (1973).
Listgarten, M.A., Microorganisms and dental implants. J Periodontol 70 (2), 220-222 (1999).
Machado, M.A. et al., Treatment of ligature-induced peri-implantitis defects by regenerative procedures: a clinical study in dogs. J Oral Sci 41 (4), 181-185 (1999).
Meffert, R.M., Periodontitis vs peri-implantitis: The same disease? The same treatment? Crit Rev Oral Biol M 7 (3), 278-291 (1996).
Mombelli, A., Microbiology and antimicrobial therapy of peri-implantitis. Periodontol 2000 28, 177-189 (2002).
Navarro, M., Michiardi, A., Castano, O., & Planell, J.A., Biomaterials in orthopaedics. J R Soc Interface 5 (27), 1137-1158 (2008).
Norowski, P.A., Jr. & Bumgardner, J.D., Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 88 (2), 530-543 (2009).
Okazaki, Y. et al., Effects of Ti, Al and V concentrations on cell viability. Mater T Jim 39 (10), 1053-1062 (1998).
Okazaki, Y., Rao, S., Tateishi, T., & Ito, Y., Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mat Sci Eng a-Struct 243 (1-2), 250-256 (1998).
Park, C.Y. et al., Surface properties of endosseous dental implants after NdYAG and CO2 laser treatment at various energies. J Oral Maxil Surg 63 (10), 1522-1527 (2005).
Persson, L.G., Araujo, M.G., Berglundh, T., Grondahl, K., & Lindhe, J., Resolution of peri-implantitis following treatment:An experimental study in the dog. Clin Oral Implan Res 10 (3), 195-203 (1999).
Persson,L.G.,Berglundh,T., Sennerby,L.,& Lindhe,A., Re osseointegration after treatment of peri-implantitis at different implant surfaces - An experimental study in the dog. Clin Oral Implan Res 12 (6), 595-603 (2001).
Pilliar, R.M., Deporter, D.A., Watson, P.A., & Valiquette, N., Dental Implant Design Effect on Bone Remodeling. J Biomed Mater Res 25 (4), 467-483 (1991).
Quirynen, M., De Soete, M., & van Steenberghe, D., Infectious risks for oral implants: a review of the literature. Clin Oral Implan Res 13 (1), 1-19 (2002).
Ratner BD. "A History of Biomaterials," in Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed. San Diego: Elsevier Academic Press, 10-19 (2004).
Renvert, S., Polyzois, I., & Maguire, R., Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implan Res 20 Suppl 4, 216-227 (2009).
Roos-Jansaker, A.M., Lindahl, C., Renvert, H., & Renvert, S., Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol 33 (4), 290-295 (2006).
Sbordone, L. & Bortolaia, C., Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin Oral Investig 7 (4), 181-188 (2003).
Schou, S. et al., Implant surface preparation in the surgical treatment of experimental peri-implantitis with autogenous bone graft and ePTFE membrane in cynomolgus monkeys. Clin Oral Implan Res 14 (4), 412-422 (2003).
Schwarz, F. et al., Comparison of naturally occurring and ligature induced peri-implantitis bone defects in humans and dogs (vol 18, pg 161, 2007). Clin Oral Implan Res 18 (3), 397-397 (2007).
Sennerby, L., Wennerberg, A., & Pasop, F., A new microtomographic technique for non-invasive evaluation of the bone structure around implants. Clin Oral Implan Res 12 (1), 91-94 (2001).
Silverstein, L.H. et al., The microbiota of the peri-implant region in health and disease. Implant Dent 3 (3), 170-174 (1994).
Speelman, J.A., Collaert, B., & Klinge, B., Evaluation of different methods to clean titanium abutments. A scanning electron microscopic study. Clin Oral Implan Res 3 (3), 120-127 (1992).
Steigenga, J., Al-Shammari, K., Misch, C., Nociti, F.H., & Wang, H.L., Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 75 (9), 1233-1241 (2004).
Sul, Y.T., Johansson, C., & Albrektsson, T., Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and osseotite implant surfaces. Int J Prosthodont 19 (4), 319-328 (2006).
Sul, Y.T., Johansson, C., Byon, E., & Albrektsson, T., The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26 (33), 6720-6730 (2005).
Sul, Y.T., Johansson, C.B., & Albrektsson, T., Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Max Impl 17 (5), 625-634 (2002).
Sul, Y.T., Johansson, C.B., Jeong, Y., & Albrektsson, T., The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23 (5), 329-346 (2001).
Sul, Y.T., Johansson, C.B., Jeong, Y., Wennerberg, A., & Albrektsson, T., Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implan Res 13 (3), 252-259 (2002).
Sul, Y.T., Johansson, C.B., Roser, K., & Albrektsson, T., Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 23 (8), 1809-1817 (2002).
Sul, Y.T. et al., The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J Biomed Mater Res A 89A (4), 942-950 (2009).
Temenoff JS. Biomaterials the Intersection of Biology and Materials Science. Pearson Education, Inc, 2-6 (2008).
Teughels, W., Van Assche, N., Sliepen, I., & Quirynen, M., Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implan Res 17 Suppl 2, 68-81 (2006).
van Winkelhoff,A.J.& Wolf, J.W., Actinobacillus actinomycetemcomitans associated peri-implantitis in an edentulous patient. A case report. J Clin Periodontol 27 (7), 531-535 (2000).
Wennerberg, A., Albrektsson, T., & Krol, J.J., A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implan Res 6 (1), 24-30 (1995).
Wennerberg,A., Hallgren,C., & Danelli, S., A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implan Res 9 (1), 11-19 (1998).
Williams DF. The Williams Dictionary of Biomaterials. 1999
Wilson, J. & Low, S.B., Bioactive Ceramics for Periodontal Treatment - Comparative-Studies in the Patus Monkey. J Appl Biomater 3 (2), 123-129 (1992).
Yamamuro T, Hench LL, Wilson J. CRC Handbook of Bioactive Ceramics, vol. 2, Calcium Phosphate and Hydroxylapatite Ceramics . CRC Press, Boca Raton, FL. 86 (1990).
Yang, Y.Z., Kim, K.H., & Ong, J.L., Review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials 26 (3), 327-337 (2005).
Yang, Chung-Wei. 水熱法與高溫後處理對電漿熔射氫氧基磷灰石塗層微觀組織及結合強度之效應 國立成功大學 材料科學及工程學系研究所 博士論文 2006