研究生: |
楊淳博 Yang, Chun-Bo |
---|---|
論文名稱: |
使用鎳金屬催化製程改善氮化鎵光偵測器效能 Using Nickel Treatment Process grow the High Performance Gallium Nitride-based Ultraviolet Photodetectors |
指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 氧化鎳 、氮化鎵 、光偵測器 |
外文關鍵詞: | NiO, GaN, Photodetector |
相關次數: | 點閱:69 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我的碩士論文提出一種新穎簡單製程方式-鎳金屬催化,此種製程主要機制是在於增加位能障並減低暗電流的電流值。實驗開始之初,我們利用熱蒸鍍機將鎳金屬在氮化鎵基板上鍍上10奈米的厚度,完成金屬膜製備後,再將元件使用不同回火氣體、溫度、時間的爐管回火製程探討。在回火製程後,我們利用原子力顯微鏡圖像發現元件回火完後,在金屬與半導體間的介面會變得很粗糙,並且在二次離子質譜儀圖像裡發現:元件回火完後,鎳、氧元素穿隧進入氮化鎵層裡,而我們猜測二者元素會形成化合物鍵結;而在電子能譜儀的分析裡,我們可以確定鎳-氧鍵結的配位數為Ni2O3。此外,我們還去量測計算出元件在未經過處理與最佳化條件(600℃、O2)處理後的蕭特基位障高度分別為:0.69eV和1.008eV;而同種方法計算下的理想因子分別為1.82 and 1.26。接著,元件在響應拒次比的項目上,由104 (未經處理) 提升至12149 (最佳化條件處理)。最後,將元件所量測得到的雜訊電流值去做換算,並定義出雜訊等效功率值,此值由9.95×10^-8(W) (未經處理) 降至1.74×10^-11(W) (最佳化條件處理);而另一項也經由換算出來的標準化偵測能力定義值則由1.59×10^7 cm Hz0.5W-1提升至9.07×10^10cm Hz0.5W-1。
My thesis has demonstrated a new manufacturing process-Ni treatment, which can increase the barrier height between the metal and semiconductor and get lower dark current value. At the beginning in our experiment, we evaporate Ni 10nm onto the GaN epitaxial layers and put them in conventional furnace annealing for different annealing temperatures, annealing ambiances and annealing times. After the annealing process, we obtain the rougher surfaces of devices by AFM, besides we find the Ni and O penetrating into the GaN epitaxial layers and we guess they formed a compound material after annealing in SIMS analysis. From the XPS analysis, we can make a conclusion that the Ni-O compound is Ni2O3. In addition, we calculate the ΦBE between the as-grown sample and Ni-treatment at 600 ℃, O2 ambient are 0.69eV and 1.008eV, at the same time, the ideality factor (n) are 1.82 and 1.26, respectively. Furthermore, the rejection contrast is ascended from 104 (without Ni treatment) to 12149 (with Ni treatment at 600 ℃). Finally, in the -2 applied voltage, we discovery the NEP calculated from noise current value between the as-growns and Ni-treatments are 9.95×10^-8(W) and 1.74×10^-11(W). In the same concepts, the D* are 1.59×10^7 cm Hz0.5W-1 and 9.07×10^10 cm Hz0.5W-1, respectively.
Most important of all, we can use simple Ni treatment manufacturing process to enhance the performances of devices, so we cannot overemphasize the deeply development and importance of Ni treatment process.
Chapter 1
[1] R. Juza and H. Hahn, “Uber die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride,” Zeitschrift fur anorganische und allgemeine Chemie, vol. 239, pp. 282–287, 1938.
[2] H. P. Maruska and J. J. Tietjen, “The preparation and properties of va-por-deposited single-crystalline GaN,” Appl. Phys. Lett., vol. 15, pp. 327–329, 1969
[3] H. P. Maruska, D. A. Stevenson and J. I. Pankove, "Violet Luminescence of Mg-doped GaN," Appl. Phys. Lett., vol. 22, pp.303-305, 1973.
[4] J. I. Pankove, M. T. Duffy, E. A. Miller, and J. E. Berkeyheiser, "Luminescence of insulating Be-doped and Li-doped GaN," J. Luminescence, vol. 8, pp. 89-93, 1973.
[5] J. I. Pankove, J. E. Berkeyheiser, and E. A. Miller, "Properties of Zinc-doped GaN," J. Appl. Phys., vol. 45, pp.1280 1285, 1974.
[6] I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, “Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED,” J. Lumin., vol. 48, pp.666–670, 1991.
[7] H. Amano, M. Iwaya, S. Nitta, S. Terao, R. Nakamura, T. Ukai, S. Saitoh, S. Kamiyama, C.Wetzel, and I. Akasaki, “Defect and stress control of AlGaN and fabrication of high-efficiency UV-LED,” in Mat. Res. Soc. Symp. Proc., vol. 639. Materials Research Society, pp. G12.7.1–G12.7.7, 2001.
[8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112– L2114, 1989.
[9] J. A. van Vechten, J. D. Zook, R. D. Horning, and G. Goldenberg, “Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperature de-ionizing radiation,” Jpn. J. Appl. Phys., vol. 31, pp. 3662–3663, 1992.
[10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139–L142, 1992.
[11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[12] S. Nakamura, “In situ monitoring of GaN growth using interference effects,” Jpn. J. Appl. Phys., vol. 30, no. 8, pp. 1620–1627, 1991.
[13] S. Nakamura, M. Senoh, and T. Mukai, “p-GaN/n-InGaN/n-GaN dou-ble-heterostructure bluelight-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, pp.L8–L11, 1993.
[14] S. Nakamura, “Characteristics of room temperature CW operated InGaN multi-quantum-wellstructure laser diodes,” in Proc. Mat. Res. Soc. Vol. 449. MRS, USA, 1996.
[15] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal–semiconductor–metal ultraviolet photodetectors on GaN with submicron finger width,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1141–1143, 2003.
[16] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. K. Kao, G. C. Chi, and J. M. Tsai, “GaN metal–semiconductor–metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 212–214, 2003.
[17] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, “Reduction of dark current in AlGaN–GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer,” IEEE Electron Device Lett., vol. 25, no. 9, pp. 593–595, 2004.
[18] C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C. H. Kuo, and Y. Z. Chiou, “The thickness effect of p-AlGaN blocking layer in UV-A bandpass photodetectors,” IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2161–2163, 2005.
[19] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, C. H. Liu, and S. L. Wu, “Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer,” IEEE Sensors J., Vol. 7, no. 9, pp. 1270-1273, 2007.
[20] K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, “High quality GaN-based Schottky barrier diodes,” Appl. Phys. Lett., Vol. 93, pp. 132110, 2008.
[21] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo, and S. L. Wu, “AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer,” IEEE Sensors J., vol. 9, no. 2, pp. 87-92, 2009.
[22] D. Holec, “Multi-scale modelling of III-nitrides: from dislocations to the electronic structure,” Selwyn College, Cambridge, 2008
[23] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
[24] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
[25] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, CH. 1, 1998.
[26] C. J. Wei, H. J. Klein, and H. Beneking, “Symmetrical mott barrier as a fast photodetector,” Electron. Lett., Vol. 17, pp. 688-690, 1981.
[27] M.Marso, M.Horstmann, M. Hardtdegen, P. Kordors, and H. Luth, 1997 Sol-id-State Electron. 41,25
[28] P.Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, 1997
[29] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Appl. Phys. Lett. 72, 1998
[30] D. S. Wuu, R. H. Horng, W. H. Tseng, W. T. Lin, C. Y. Kung, J. Crystal Growth 220, 2000
[31] K. Uchida, K. Nishida, M. Kondo, H. Munekata, J. Crystal Growth 189/190, 1998.
[32] T. Kachi, K. Tomita, K. Itoh, H. Tadano, Appl. Phys. Lett. 72, 1998
[33] T. Wang, Y. Morishima, N. Naoi, S. Sakai, J. Crystal Growth 213, 2000
Chapter 2
[34] F. Ren and J. C. Zolper, Wide energy bandgap electronic devices. New Jersey: World Scientific, ISBN 981-238-246-1, 2003
[35] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[36] A. P. Grzegorczyk, L. Macht, P. R. Hageman, J. L. Weyher, and P. K. Larsen, “Influence of the nucleation layer morphology and epilayer structure on the resistivity of GaN films grown on cplane sapphire by MOCVD,” J. Cryst. Growth, vol. 273, no. 3, 2005.
[37] H. M. Manasevit, F. M. Erdman, andW. I. Simpson, J. Electrochem. Soc., vol. 118, p. 1864, 1971.
[38] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[39] S. Nakamura, “In situ monitoring of GaN growth using interference effects,” Jpn. J. Appl. Phys., vol. 30, no. 8, pp. 1620–1627, 1991.
[40] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139–L142, 1992.
[41] T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-Based Blue Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,” Jpn. J. Appl. Phys., vol. 37, L839-841, 1998.
[42] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 36, L899-902, 1997.
[43] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/A1GaN-based LDs with Modulation-doped Sstrained-lager Su-perlattices Grown on an Epitaxilly Overgrown GaN Substrate,” Appl. Phys. Lett. vol. 72, pp. 211-213, 1998.
[44] S. C. Ling, C. L. Chao, J. R. Chen, P. C. Liu, T. S. Ko, T. C. Lu, H. C. Kuo, S. C. Wang, S. J. Cheng and J. D. Tsay, “Nanorod epitaxial lateral overgrowth of a-plane GaN with low dislocation density,” Appl. Phy. Lett., vol. 94, 251912, 2009.
[45] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang and J. F. Chen, “Deposition of SiO2 Layers on GaN by Photochemical Vapor Deposition,” J Electrochem Soc, vol. 150, pp. C77-80, 2003.
[46] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl Phys Lett, vol. 73, pp. 3893-3895, 1998.
[47] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi and T. Enoki, “High Tem-perat ure Characteristics of Insulated-Gate AlGaN/GaN Heterostructure Field-Effect Transistors with Ultrathin Al2O3/Si3N4 Bilayer,” Jpn J Appl Phys, vol. 44, pp. 7889-7891, 2005.
[48] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl Phys Lett, vol. 77, pp. 3788-3790, 2000.
[49]http://www.ime.a-star.edu.sg/foundry/pdf/Secondary%20ion%20mass%20spectrometry.pdf
[50] http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[51] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J Appl Phys, vol. 83, pp. 6148-6060, 1998.
[52] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain,” Jpn J Appl Phys, vol. 40, L505-507, 2001.
[53] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl Phys Lett, vol. 79, pp. 1417-1419, 2001.
[54] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Muno, ”So-lar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetec-tors,” Electron. Lett., Vol. 36, pp. 1581-1583, 2000.
[55] A. L. McWhorter, “1/f noise and germanium surface properties,” In semicon-ductor Surface Physics, University of Pennsylvania, Philadelphia, pp. 207-228, 1957.
[56] P. H. Handel, “1/f Noise-An "Infrared" Phenomenon,” Phys. Rev. Lett., vol. 34, pp. 1492–1495, 1975.
[57] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., Vol. 70, pp. 2277-2279, 1997.
[58] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 747, John Wiley & Sons, New York, 1981.
[59] E. H. Rhoderick, “Metal-Semiconductor Contacts," IEE Proceeding, Sol-id-State and Electron Devices, vol. 129, pp. 1-14, 1982.
[60] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward currentvoltage characteristics,” Appl Phys Lett., vol. 49, pp. 85-87, 1986.
[61] H. Norde, “A modified forward IV plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
[62] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
[63] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN,” Appl Phys Lett, vol. 72, pp. 3317-3319, 1998.
[64] V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D. Ritter, M. Orenstein and A. Peer, “On the extraction of linear and nonlinear physical parameters in nonideal diodes,” J. Appl. Phys., vol. 85, pp. 6873-6883, 1999.
Chapter 4
[65] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from currentvoltage characteristics,” Appl. Phys. Lett., vol. 49, pp. 85-87, 1986.
[66] C. H. Kang, S. H. Seo, and H. W. Jang, “Two stage oxidation in epitaxial Ni (111)/GaN (0001) thin films,” Appl. Phys. Lett., Vol. 83, pp. 2139-2141, 2003.
[67] L. C. Chen, F. R. Chen and J. J. Kai, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys., vol. 86, pp. 3826-3832, 1999.
[68] S. M. Wang, C. H. Chen, S. J. Chang, Y. K. Su and B. R. Huang, “Mg-doped GaN activated with Ni catalysts,” Materials Science and Engineering B, vol. 117, pp. 107-111, 2005.
[69] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,” Electron. Lett., vol. 36, pp. 2096-2098, 2000.
[70] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors,” J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
[71] S. R. Morrison, “Low-frequency noise and performance of GaN p-n junction photodetectors,” J. Appl. Phys., vol. 72, pp. 4104-4112, 1992.
[72] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.