| 研究生: |
林東杰 Lin, Tung-Chieh |
|---|---|
| 論文名稱: |
Mg0.95Co0.05TiO3介電陶瓷材料及微波應用之研究 Study of Mg0.95Co0.05TiO3 Dielectric Ceramics and Applications at Microwave Frequencies |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 微波 、陶瓷 |
| 外文關鍵詞: | microwave, ceramics |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將討論混相及燒結促進劑對介電陶瓷材料Mg0.95Co0.05TiO3之影響,實驗結果顯示,原始的Mg0.95Co0.05TiO3 燒結溫度必須達到1450 ℃ ,此時可得介電特性εr ~16.8, Qxf ~230000 (9GHz) ,τf ~ -55 (ppm/oC)。由於τf為負值,藉由與Ca0.61Nd0.78/3TiO3 (+247(ppm/oC))混相以補償其τf 。再添加不同燒結促進劑B2O3 與ZnO ,探討液相對其微波特性的影響。
當0.9 Mg0.95Co0.05TiO3 -0.1Ca0.61Nd0.78/3TiO3添加0.25 wt% B2O3在1225℃燒結持溫4小時,具有最佳的介電特性﹔εr ~21.6, Qxf ~55000 (9GHz),τf ~-32.4 (ppm/oC)。
添加0.75 wt% ZnO在1250℃燒結持溫4小時,具有最佳的介電特性﹔εr ~22.22, Qxf ~70000 (9GHz),τf ~-28.0(ppm/oC)。改善了Mg0.95Co0.05TiO3 介電陶瓷微波特性。
另外試圖與Ca0.8Sm0.4/3TiO3 (+400(ppm/oC)) 混相{x Mg0.95Co0.05TiO3-(1-x)Ca0.8Sm0.4/3TiO3}藉以補償其負的溫度係數進而探討其介電特性之變化,結果顯現在x=0.9時,燒結溫度1275℃,具有較佳的微波特性:介電常數為22.48,Q×f值約為108000(9GHz),共振頻率溫度係數(τf)約為-8(ppm/oC)左右。
最後,本論文嘗試以FR4、氧化鋁、自製的陶瓷基板,製作設計一個Parallel-Coupled Line帶通濾波器,操作頻段涵蓋4.64-6.96GHz,以期改善濾波效果。
The microwave properties of Mg0.95Co0.05TiO3 dielectric ceramic materials are discussed in this paper. By adding different sintering aids ZnO and B2O3 respectively, we study the existence effects of liquid phase for the microwave properties of Mg0.95Co0.05TiO3. The experimental results show that with addition of 0.75wt% ZnO can efficiently reduce sintering temperature from 1350 oC to 1250 oC, and we obtain that the dielectric properties are εr ~22.22, Qxf ~70000 (9GHz) and τf ~ -28.0(ppm/oC). Concerning about the negative value of τf , we choose adding the Ca0.8Sm0.4/3TiO3 (+400(ppm/oC)) to adjust the value approaching to zero. At 1275 oC, 0.9Mg0.95Co0.05TiO3-0.1Ca0.8Sm0.4/3TiO3 appears the best property: εr~22.48, Qxf~108000(9GHz) andτf~ -8(ppm/oC).
Hence, the microwave properties of Mg0.95Co0.05TiO3 dielectric ceramic materials is improved.
In addition, we design and fabricate a Parallel-Coupled Line bandpass filters with designed center frequency of 5.8GHZ on FR4 、Al2O3 、MCT-CST substrate.
[1] A. Okaya, Proc. IRE, vol.48, pp.1921, 1960.
[2] H. M. O’Brryan, JR. and J.Thomson, JR., J.Am.Ceram.Soc., vol. 57,pp.450, 1974.
[3] G. Wolfram and H. E. Gobel, Mat. Res. Bull. Vol.16, pp.1455, 1981.
[4] S. Nishgaki, H. Kato, S. Yano and R. Kamamura, Am. Ceram. Soc.Bull., vol.66, pp.1405, 1987.
[5] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470,1994.
[6] K. H. Yoon , W. S. Kim , E. S. Kim,” Dependence of the octahedral bond valence on microwave dielectric properties of Ca1-xSm2x/3TiO3 ceramics” Materials Science and Engineering, B99 pp. 112-115, 2003.
[7] R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10,pp.391-398, 1939.
[8] S. B. Cohn, “Microwave Bandpass Filters Contain High Q Dielectric Resonator”, IEEE Trans. on MTT, pp.218-227, 1968.
[9] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
[10] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining. Met. Engrs, pp.878-905, 1948.
[11] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470.
[12] SCHAFFER SAXENA ANTOLOVICH SANDERS WARNER,“The Science and Design of Engineering Materials”,Chap3.
[13] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003
[14] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
[15] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[16] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul. 1970.
[17] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
[18] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308, 1978.
[19] R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[20] J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[21] D. Kajfez, “Computed model field distribution for isolated dielectric resonator-s,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[22] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[23] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.
[24] Darko Kajfez and Pierre Guillon, Dielectric Resonators, University of Mississippi.
[25] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[26] Brian C. Wadell,Transmission line design handbook, chap5.
[27] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[28] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[29] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[30] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[31] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[32] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[33] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop r-esonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[34] T. Edwards, Foundations for microstrip circuit design, second edition., UK: Wiley, 1991.
[35] Inder Bahl and Prakash Bhartia, Microwave solid state circuit design, chap6 John Wiley&Sons 1988.
[36] Peter A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
[37] Kuo-Sheng Chin,Liu-Yang Lin,and Jen-Tsai Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 231–233, May 2004.
[38] Kuo-Sheng Chin and Jen-Tsai Kuo, “Insertion Loss Function Synthesis of Maximally Flat Parallel-Coupled Line Bandpass Filters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10,oct 2005.
[39] G. L. Matthaei, L. Young, and E. M. T. Johns, Microwave Filters Impedance Matching Networks and Coupling Structures, Norwood,MA: Artech House, 1980.
[40] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microw. Theory Tech.,vol. MTT-23, no. 12, pp. 1007–1012, Dec. 1975.
[41] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw.Theory Tech., vol. MTT-27, no. 1, pp. 44–50, Jan. 1979.
[42] 傅坤幅, 微波陶瓷材料介電特性量測,工業材料, 132期, 86年12月.
[43] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp.473-476, 1985.
[44] Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE. Trans. Micr- owave Theory Tech., MTT-33, 586-592, 1985.
[45] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., MTT-28, 1077-1085, 1980.
[46] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
[47] C.-L.Huang, C.-L. Pan and J.-F. Hsu, “Dielectric properties of (1-x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system at microwave frequency”, Mat. Res. Bull., vol.37, pp.2483- 2490, 2002.
[48] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, Jpn. J. Appl.Phys.,vol.37, 5367, 1998.
[49] Hee-Kyun Shin, Hyunho Shin, Hyun Suk Jung, Seo-Yong Cho , Jeong-Ryeol Kim , Kug Sun Hong, “Role of lithium borosilicate glass in the decompositionof MgTiO3-based dielectric ceramic during sintering”, Mat. Res. Bull., vol.41, pp.1206- 1214, 2006.