簡易檢索 / 詳目顯示

研究生: 陳彥佑
Chen, Yen-Yu
論文名稱: 以離散小波轉換為基礎之新影像壓縮法
New Image Compression Algorithms Based on Discrete Wavelet Transform
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 108
中文關鍵詞: 小波轉換
外文關鍵詞: Wavelet Transform
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多媒體技術快速的進步,使用者對於各式各樣資訊的需求越來越大,導致傳輸頻寬及儲存空間不足!雖然網路通訊以及資料儲存設備技術也有顯著的進步,然而隨著資訊化普及,使用者的需求一直都遠大於網路及儲存空間所能提供之服務。因此資料在傳輸或儲存前要先經過壓縮,才能在有限的頻寬之下取得服務的品質保證。
    在各類傳輸媒體之中,以視訊及影像所需資料量最大,因此對於此二種媒體壓縮之演算法一直都是學者專家及工業界研究的主題。離散小波轉換(DWT)是一個壓縮效率極佳的工具,它能夠使得空間域的能量集中在頻率域的低頻部分,因此它已被採用於視訊,影像,音訊…等壓縮裡。本論文裡主要是對DWT在醫學及一般自然影像壓縮上做深入研究,論文中包含我們新發展之演算法,它們可以提昇壓縮倍率並且維持一定的重建品質。
    在論文第一個主題是探討DWT轉換完之後的係數處理。第一個演算法是針對離散小波轉換後的影像做編碼,此演算法是利用dictator來消除在相同階層子頻帶的相關性,與分區塊且利用繼承樹來進行預測的演算法很類似,不同點在於排序過程。第二個演算法則是針對離散餘弦轉換後的影像作壓縮。此演算法是將離散餘弦轉換後的係數重排後,對DCT係數作三階樹狀結構編碼。在這兩個演算法的實驗數據中,第一個演算法比現行壓縮標準JPEG2000以及分區塊且利用繼承樹來進行預測的演算法的壓縮品質要好,適用在醫學影像及自然影像的壓縮。而第二個演算法的壓縮品質比現行壓縮標準JPEG好大約 3~4 dB。
    論文中第二主題針對離散小波轉換後的影像後處理做一探討,我們提出利用四分數分割及一組形態運算子來去除小波影像的水波效應。此新方法具有快速處理之特性,同時也能達到相當高的壓縮比,在同樣壓縮率下可以比新的靜態影像壓縮標準JPEG 2000有較佳的訊號雜訊比。
    在論文最後一個主題裡,提出一個使用頻率重組、分類、方塊相似性與去除水波效應濾波器四個部份來編碼的新醫學影像編碼器。在同樣壓縮率下, 可以比新的靜態影像壓縮標準JPEG 2000及著名的SPIHT有較佳的訊號雜訊比。

    Due to the progress of multimedia technologies, the demands of various types of information from users become huge so as to lead to the shortage of transmission bandwidth and storage space. The technologies of network and storage devices have been improving as well; however, the users’ desires always exceed the provided services currently. Therefore, data must be compressed before transmission or storage to achieve the needed quality under the circumstance of limited bandwidth.
    Among all kinds of media, video and image data occupy immense volume. Thus, the compression technologies of them have been intensively exploited in effective compression tool, which compacts the spatial energy into few coefficients in frequency domain. DWT has been employed in the compressions of image, video and speech etc. In this dissertation, new algorithms based on DWT are developed to raise the compression performance of nature and medical images.
    The first part is to explore the processing of DWT coefficients. First algorithm proposes a dictator to eliminate the correlation in the same level subband for the wavelet-based image encoding. This algorithm is similar to the SPIHT but different in sorting pass. Second algorithm modified the first algorithm for block-based DCT image. This algorithm represents the DCT coefficients into three-scale tree structure with ten-subband coefficients. In our experiments, the first proposed algorithm for DWT coefficients reduces more redundancy than SPIHT algorithm and JPEG2000 at the same bit-rate and is suitable for both medical images and natural images. The second proposed algorithm for DCT coefficients outperforms JPEG standard about 3 to 4 dB.
    The second part in this dissertation concentrates on the post-processing image quality for wavelet-based image coding. Here, an algorithm presents quad-tree decomposition and a set of morphological filters for reducing the ringing artifacts of images. It has the advantage of fast implementation and enhances reconstructed image quality compared to JPEG2000 at the same bit rate in terms of both PSNR and the perceptual results.
    Finally, an algorithm uses spectrum reorganization, classification, block similarity, and de-ringing filter to encode medical images. It can enhance the quality of the reconstructed image in both the PSNR and perceptual results compared to JPEG2000 and SPIHT given the same bit rate.

    Publication List iii List of Figures v List of Table viii 中文摘要 ix Abstract x Chapter 1 Introduction 1.1 The Need of Data Compression 1-2 1.2 Categories of Compression 1-4 1.3 Synopsis of the Dissertation 1-4 Chapter 2 Previous Studies and Background 2.1 Survey of Compression Techniques 2-1 2.1.1 Huffman coding 2-1 2.1.2 Predictive coding 2-1 2.1.3 Widely Used Transform: DCT 2-2 2.2 Discrete Wavelet Transform 2-3 2.2.1 Embedded Zerotree Wavelet (EZW) Algorithm 2-5 2.2.2 Set Partitioning in Hierarchical Trees (SPIHT) Algorithm 2-7 2.3 JPEG2000 and JPEG 2-11 Chapter 3 New, High Fidelity Medical Image Compression Based on Modified SPIHT 3.1 Introduction 3-1 3.2 Proposed Method 3-2 3.3 Simulation Result 3-12 3.4 Conclusions 3-17 Chapter4 Enhancing Ultrasound Images by Morphology Filter and Eliminating Ringing Effect 4.1 Introduction 4-1 4.2 Proposed Post-processing Method 4-3 4.2.1 Edge Detection 4-4 4.2.2 Quad-tree decomposition 4-5 4.2.3 Morphology based filtering 4-6 4.3 Simulation Results 4-12 4.4 Conclusions 4-19 Chapter 5 Compressing Medical Images by Morphology Filter Voting Strategy and Ringing Effect Elimination 5.1 Introduction 5-1 5.2 Medical Image Coder 5-2 5.2.1 Spectrum Reorganization 5-2 5.2.2 Classification 5-3 5.2.3 Block Similarity for Bit-Rate Reduction 5-5 5.2.4 The De-ringing Encoder and Decoder 5-5 5.2.5 Bit Rate Allocation 5-12 5.3 Simulation Results 5-12 5.4 Conclusions 5-14 Chapter6 Embedded Medical Image Compression Using DCT Based Subband Decomposition and Modified SPIHT Data Organization 6.1 Introduction 6-1 6.2 Discrete Cosine Transform 6-3 6.3 Proposed Algorithm 6-3 6.3.1 Translation Function 6-4 6.3.2 Combined Function 6-6 6.4 Simulation Results 6-9 6.5 Conclusions 6-15 7.Concluding Remarks 7-1 Reference A-1

    [1] A. Baskuet, H. Benoit-Cattin, and C. Odet, “On a 3-D medical image coding method using a separable 3-D wavelet transform,” SPIE Med. Imag., vol. 2431, pp. 173-183, 1995
    [2] A. K. Jain, “Image data Compression: A review,” Proc. IEEE, vol. 69, pp. 349-389, 1981
    [3] American College of Radiology (ACR)/ National Electrical Manufacturers Association (NEMA) standards Publication for Data Compression Standards, NEMA Publication PS-2, Washington, DC, 1989
    [4] A. Munteanu, J. Cornelis, G. V. D. Auwera and P. Cristea, “Wavelet Image Compression – The Quadtree Coding Approach,” IEEE Transactions on Technology in Biomedicine, vol. 3, no. 3, pp.176-185, September 1999
    [5] A. Said and W. A. pearlman, “A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees,” IEEE Trans. Circuits and System for Video Technology, vol. 7, no. 3, pp. 243-250, June 1996.
    [6] B. Furht, S. W. Smoliar and H. Zhang, Video and image processing in multimedia systems, Hingham, MA: Kluwer Academic, 1995
    [7] Brian A. Banister and Thomas R. Fischer, “Quadtree Classification and TCQ Image Coding,” IEEE Transactions and System for Video Technology, vol. 11, no. 1, pp. 3-8, January 2001
    [8] C. H. Wu and J. D. Irwin, “Multimedia and Multimedia Communication: A Tutorial,” IEEE Trans. Industrical Electronics, vol. 45, no. 1, pp.4-14, 1998
    [9] C. N. Manikopoulos, ”Neural network approach to DPCM system design for image coding, ” IEE Proc.-I, vol.139, pp.501-507, 1992
    [10] David S. Taubman and Michael W. Marcellin, “JPEG2000 Image Compression Fundamentals, Standard and Practice,” Kluwer Academic Publishers, 2002
    [11] Digital imaging and communication in medicine (DICOM), version 3, American College of Radiology (ACR) / National Electrical Manufacturers Association (NEMA) Standards Draft, Dec. 1992.
    [12] Ed Chiu, Jacques Vaisey, and M. Stella Atkins, “Wavelet-based space-frequency compression of ultrasound images,” IEEE Trans. Information Technology in Biomedicine, vol. 5, no. 4, pp. 300-310, Dec. 2001
    [13] E. J. Delp and O. R. Mitchell, “Image compression using block truncation coding,” IEEE Trans. Commun. vol.27, no.1, pp.1335-1342,1979
    [14] I. Daubechies, “Ten Lectures on Wavelets,” Capital City Press, Montpelier, Vermont, 1992
    [15] J.M. Shapior, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. Image Processing, vol. 41, pp. 3445-3462, Dec.1993.
    [16] John Canny, “A computational approach to edge detection,” IEEE Tran. Pattern analysis and Machine Intelligence, vol. PAMI-8, no. 6, Nov. 1986;
    [17] “JPEG2000 Verification Model 7.0”, ISO/IEC JTC 1/SC 29/WG 1 N1684, Apr. 2000
    [18] J. Wang, and H. K. Huang, “Medical Image Compression by Using Three- Dimensional Wavelet Transformation,” IEEE Tran. Medical Imaging, vol.15, no. 4, pp. 547-554, Aug. 1996
    [19] K. R. Rao and J. J. Hwang, Tecbnologies and Standards for Image, Video, and Audio Coding, Prentice-Hall, Inc. New Jersey, 1996
    [20] K. Sayood, Introduction to data compression, San Francisco, CA: Morgan Kaufmann Publishers, 1995
    [21] M. Antonini, N. Barlaud, P Mathieu and I. Daubechies, ”Image coding using wavelet transform”, IEEE Trans. Image Processing, vol. 1, no. 2, pp. 205-220, Apr.1992
    [22] Mei-Yin Shen and C.-C. Jay Kuo, “Artifact reduction in low bit rate wavelet coding with robust nonlinear filtering,” IEEE Second Workshop on Multimedia Signal Processing, pp. 480-485, 1998
    [23] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete cosine transform, ” IEEE Tran. Comput., vol. C-23, pp. 90-93, Jan. 1974
    [24] N. I. Cho and S. U. Lee., “Fast algorithm and implementation of 2-D DCT,” IEEE Trans. Circuits and System for Video Technology, vol. 38, no. 3, pp. 297-305 , Mar. 1991
    [25] N. S. Jayant and P.Noll, Digital coding of waveforms, principles and applications to speech and video, Englewood Cliffs, NJ:Prentic Hall,1984
    [26] P. Pirsch, “Adaptive intra/interframe DPCM coder,” Bell Syst. Tecb J. vol. 61, pp. 747-764, 1982
    [27] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addision-Wesley, Reading, MA, 1992.
    [28] Rick Archibald and Anne Gelb, “A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity,” IEEE Tran. Medical Imaging, vol. 21, no. 4, pp. 305-319, Apr. 2002
    [29] S. C. Tai, Y. Y. Chen, and W. C. Yan, “ New, high-fidelity medical image compression based on modified set partitioning in hierarchical trees, ” Optical Engineering, vol. 42, no.7, pp.1956-1963, Jul. 2003
    [30] S. C. Lo, J. Xuan, H. Li, M. T. Freedman, and S. K. Mun, “Arithmetic Wavelet Decompositions in Radiological Image Compression,” Proc. SPIE Medical Imaging Conference, vol. 3031, 1997
    [31] S. Mallat, “A Theory for Multiresolution Signal Decomposition: the Wavelet representation,” IEEE Transaction Patten Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989
    [32] Special issue on advances in image and video compression, Proc. IEEE, vol. 83, pp. 135-340, Feb. 1995
    [33] S. Wong, L. Zaremba, D. Gooden, and H. K. Huang, “Radiologic Image Compression - a review,” Proc. IEEE, vol. 83, no. 2, pp.194-219, 1995
    [34] Tariq Bakir and Stanley J. Reeves, “A filter design method for minimizing ringing in a region of interest in MR spectroscopic images,” IEEE Tran. Medical Imaging, vol.19, no. 6, pp.585-600, Jun. 2000;
    [35] V. Bhaskaran and K. Konstantinides, Image and Video compression standards, Hingham, MA: Kluwer Academic, 1996
    [36] W. Zschunke, “DPCM picture coding with adaptive prediction,” IEEE Trans. Commun. vol. 25, pp.1295-1302, 1977
    [37] Y. G. Wu and S. C. Tai, “An efficient BTC image compression Technique, ”IEEE Trans. Consumer Electronics, vol. 44, no. 2, pp.317-325, May, 1998
    [38] Y. G. Wu and S. C. Tai, “Medical Image Compression by Discrete Cosine Transform Spectral Similarity Strategy,” IEEE Trans. Information Technology in Biomedicine, vol. 5, no. 3, pp. 236-243, Sep. 2001
    [39] 資料壓縮(二版), 戴顯權, 松崗電腦圖書公司, 1998年
    [40] 資料壓縮的原理與應用, 吳樂南, 儒林圖書公司, 1996年

    下載圖示 校內:2009-06-09公開
    校外:2009-06-09公開
    QR CODE