| 研究生: |
劉冠和 Liu, Kuan-Ho |
|---|---|
| 論文名稱: |
定頻零電壓切換之二次側控制返馳式轉換器 Secondary-Side Controlled Flyback Converter with Constant Frequency Zero-Voltage-Switching |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 二次側控制 、直流-直流電源轉換器 、定頻零電壓切換 、返馳式轉換器 |
| 外文關鍵詞: | secondary-side control, DC-DC power converters, constant frequency zero-voltage-switching, flyback converters |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Universal Serial Bus Power Delivery (USB-PD) 協定在近年逐漸成為充電器重要的趨勢,此協定利用微控制器達到充電器二次側與負載的溝通。若利用此微位控制器同時控制一次側主開關,可簡化系統控制並精確量測輸出資訊,因此,二次側控制技術是發展USB-PD重要的關鍵技術之一。本論文提出一新型二次側控制法,使返馳式轉換器操作於定頻零電壓切換。本文所提出之二次側控制法,在主開關導通前,再次導通同步整流開關,以提供反向激磁電感電流,使主開關達到零電壓切換。本論文首先分析返馳式轉換器之動作原理,系統參數設計並討論定頻零電壓切換參數之設計準則。最後,實作一輸入電壓127~373 V、輸出為20 V/5 A之實驗雛形,利用數位訊號處理器TMS320F28335進行控制,以驗證理論分析。此轉換器於此輸入電壓範圍皆可達到定頻零電壓切換,系統最高轉換效率為91.1%。
Universal Serial Bus Power Delivery (USB-PD) protocol has gradually become a trend for adaptor with the micro-controller as the communication protocol between the adaptor output and the load. The secondary-side control was introduced by using the micro-controller as the main controller of the power converter to simplify the system control and modulate output voltage accurately with fast response. In this thesis, a novel secondary-side control is proposed for flyback converter with constant frequency zero-voltage switching. The synchronous rectifier switch is turned on for generating reverse magnetizing current for the main power switch to turn on with zero-voltage switching. The operating principles of flyback converter are analyzed, the system parameters are designed, and the design criteria of the constant frequency zero-voltage-switching are discussed in details. Finally, flyback converter controlled with digital controller TMS320F28335 is implemented to verify the theoretical analysis for 127 V~373 V input range and 20 V/5 A output. The experimental results show that the highest system efficiency is 91.1% with the proposed constant frequency zero-voltage switching.
[1]USB.org, “Introduction to USB-PD,” Jan. 2017. [Online]. Available:
http://www.usb.org/developers/powerdelivery/PD_1.0_Introduction.pdf
[2]USB.org, “Specifications of USB-PD,” Mar. 2018. [Online]. Available:
http://www.usb.org/developers/docs/usb_32_030818.zip
[3]W. H. Yang, C. H. Lin, K. H. Chen, C. L. Wey, Y. H. Lin, J. R. Lin, T. Y. Tsai, and J. L. Chen, “95% light-load efficiency single-inductor dual-output DC-DC buck converter with synthesized waveform control technique for USB Type-C,” in Proc. 2016 IEEE Symp. VLSI Circuits, pp. 1-2, Jun. 2016.
[4]C. J. Chen, C. H. Cheng, P. S. Wu, and S. S. Wang, “Unified small-signal model and compensator design of flyback converter with peak-current control at variable frequency for USB power delivery,” IEEE Trans. Power Electron, (Early Access). 2018.
[5]T. H. Chen, W. L. Lin, and C. M. Liaw, “Dynamic modeling and controller design of flyback converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 4, pp. 1230-1239, Oct. 1999.
[6]J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, “Single-stage single-switch PFC flyback converter using a synchronous rectifier,” IEEE Trans. on Industry Applications, pp. 1352 - 1365, May 2008.
[7]J. Zhang, X. Huang, X. Wu, and Z. Qian, “A high efficiency flyback converter with new active clamp technique,” IEEE Trans. on Power Electron., vol. 25, no. 7, pp. 1775 - 1785, Jul. 2010.
[8]M. T. Zhang, M. M. Jovanovic, and F. C. Y. Lee, “Design considerations and performance evaluations of synchronous rectification in flyback converters,” IEEE Trans. on Power Electron., vol. 13, no. 3, pp. 538-546, May 1998.
[9]S. H. Kang, D. Maksimović, and I. Cohen, “Efficiency optimization in digitally controlled flyback DC–DC converters over wide ranges of operating conditions,” IEEE Trans. on Power Electron., vol. 27, no. 8, pp. 3734-3748, Aug 2012.
[10]J. Shen, T. Liu, Y. Wu, and Q. Zheng, “Constant current LED driver based on flyback structure with primary side control,” in Proc. IEEE PEAM, 2011, pp. 260-263.
[11]X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4602-4612, Nov. 2012.
[12]J. Zhang, H. Zeng, and T. Jiang, “A primary-side control scheme for high power-factor LED driver with TRIAC dimming capability,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4619-4629, Nov. 2012.
[13]C. W. Chang and Y. Y. Tzou, “Primary-side sensing error analysis for flyback converters,” in Proc. IEEE IPEMC, 2009, pp. 524-528.
[14]Y. T. Lin and T. J. Liang, “IC design of primary-side control for flyback converter,” in Proc. IEEE IFEEC, 2013, pp. 449-453.
[15]X. Huang, W. Du, W. Yuan, J. Zhang, and Z. Qian, “A novel variable frequency soft switching method for flyback converter with synchronous rectifier,” in Proc. 2010 25th Annu. IEEE Appl. Power Electron. Conf. Expo., Feb., pp. 1392–1396, 2010.
[16]A. Connaughton, A. P. Talei, K. Leong, K. Krischan, and A. Muetze, “Investigation of a soft-switching flyback converter with full secondary side-based control,” IEEE Trans. on Industry Applications, pp. 5587-5601, May 2017.
[17]“FSQ510 Green Mode Fairchild Power Switch for Valley Switching Converter,” Fairchild Semiconductor, 2015.
[18]“Application note AN-4150 design guidelines for flyback converters using FSQ-series Fairchild Power Switch,” Fairchild Semiconductor, Jan. 2014.
[19]“NCP1207 PWM current-mode controller for free running quasi-resonant operation,” ON Semiconductor, 2010.
[20]“NCP1337 PWM current-mode controller for free running quasi-resonant operation,” ON Semiconductor, 2014.
[21]“AND8266 designing NCP1337,” ON Semiconductor.
[22]P. C. Hsie , C. J. Chang, and C. L. Chen, "A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching,” in Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, pp. 3406-3412, Oct. 2013.
[23]J. M. Zhang, H. L. Zeng, and X. K. Wu, “An adaptive blanking time control scheme for an audible noise-free quasi-resonant flyback converter,” IEEE Trans. on Power Electronics, vol. 26, no.10, pp. 2735-2742, Oct. 2011.
[24]V. T. Thuy, S. O'Driscoll, and J. V. Ringwood, “Primary-side sensing for a flyback converter in both continuous and discontinuous conduction mode,” in Signals and Systems Conference (ISSC), IET Irish. IET, pp. 1-6, 2012.
[25]B. Keogh, B. Long, and J. Leisten, “Design improvements for primary-side-regulated high-power flyback converters in continuous-conduction-mode,” in Applied Power Electronics Conference and Exposition (APEC), 2015. IEEE, pp. 492-497, 2015.
[26]Y. T. Lin, T. J. Liang, and K. H. Chen, “IC design of primary-side control for flyback converter,” in Future Energy Electronics Conference (IFEEC), 2013 1st International, pp. 449-453, Nov. 2013.
[27]C. N. Wu, Y. L. Chen, and Y. M. Chen, “Primary-side peak current measurement strategy for high-precision constant output current control,” IEEE Trans. on Power Electron., vol. 30, no. 2, pp. 967-975, Feb. 2015.
[28]X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. on Power Electron., vol. 27, no. 11, pp. 4602-4612, Nov. 2012.
[29]H. H. Chou, Y. S. Hwang, and J. J. Chen, “An adaptive output current estimation circuit for a primary-side controlled LED driver,” IEEE Trans. on Power Electron., vol. 28, no. 10, pp. 4811-4819, Oct. 2013.
[30]P. L. Huang, D. Chen, C. J. Chen, and Y. M. Chen, “An adaptive high-precision overpower protection scheme for primary-side controlled flyback converters,” IEEE Trans. on Power Electron., vol. 26, no. 10, pp. 2817-2824, Jan. 2011.
[31]P. C. Hsieh, C. J. Chang and C. L. Chen, "A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching," in IEEE Energy conversion Congress and Exposition (ECCE), 2013.
[32]W. C. Wu, T. J. Liang, K. H. Chen, and C. Y. Li, "Quasi-resonant flyback converter with new valley voltage detection mechanism", Applied Power Electronics Conference and Exposition (APEC) 2018 IEEE, pp. 767-770, 2018.
[33]P. C. Hsieh, C. J. Chang, C. L. Chen, “A primary-side control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching,” in Proc. IEEE ECCE, 2013, pp. 3406-3412.
[34]C. N. Wu, Y. L. Chen, and Y. M. Chen, “Primary-side peak current measurement strategy for high-precision constant output current control,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 967-975, Feb. 2015.
[35]H. H. Chou, Y. S. Hwang, and J. J. Chen, “An adaptive output current estimation circuit for a primary-side controlled LED driver,” in IEEE Trans. on Power Electron., vol. 28, no.10, pp. 4811-4819, Oct. 2013.
[36]Power Integrations TM, “Innoswitch CP,” Jun. 2017. [Online]. Available:
https://ac-dc.power.com/sites/default/files/product-docs/innoswitch3-cp_family_datasheet.pdf
[37]A. Connaughton, A. P. Talei, K. Leong, K. Krischan, and A. Muetze, “Investigation of a soft-switching flyback converter with full secondary side-based control,” IEEE Trans. on Industry Applications, pp. 5587-5601, May 2017.
[38]ON Semiconductor, “Design Guidelines for RCD Snubber of Flyback Converters,” Jun. 2006. [Online]. Available:
https://www.fairchildsemi.com/application-notes/AN/AN-4147.pdf