| 研究生: |
鄒昌和 Tzou, Chang-Ho |
|---|---|
| 論文名稱: |
基於PID與滑模控制之具有直接傳輸項的非線性系統追蹤器和擾動估測器設計:HTRDNA演算法的追蹤器最佳化 A Tracker and Disturbance Estimator Design for Nonlinear system with Direct Feed-Through Term Based on PID and sliding Mode Control: HTRDNA Algorithm for Tracker Optimization |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 比例積分微分控制器 、滑模控制 、實數DNA演算法 、田口法 、估測器 、補償干擾 |
| 外文關鍵詞: | PID controller, sliding mode control, real-coded DNA algorithm, Taguchi method, estimator, disturbance compensation |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出的方法主要以連續系統討論。在連續線性系統中,我們提出以時域的方式設計比例積分微分控制器;而在連續PID設計中,許多文獻提出使用Ziegler-Nichols方法、演算法,或以追蹤誤差設計控制器,但本論文利用線性變換及擴增系統矩陣的方式,設計出不需依賴經驗法則就能求出比例積分微分控制器的參數值。利用實數DNA演算法,透過選取適當的成本函數搜尋較合適的參數及控制器種類,進而使系統達到期望的表現。最後我們應用田口法以提升實數DNA演算法的效能,因此提出了HTRDNA演算法。在論文中亦針對外在未知擾動及系統不確定性,利用滑模控制理論來設計控制器及估測器,以補償干擾及系統不確定性的發生。
In this thesis, we mainly propose our method for continuous-time system. For the linear system, we design a PID controller by way of time domain. Besides, a multitude of approaches towards the design of PID controllers for the continuous system have been made use of Ziegler-Nichols tuning method, algorithm or based on tracking error. Our proposed method takes advantage of the combination of linear transformation and augmented system matrix to find out the parameters of PID controller without empirical law. To fulfill our desired requirement, we use real coded DNA algorithm. Thus, the suitable parameters and type of controllers are obtained through the proper cost function we choose. In addition, Taguchi method is applied to enhance the efficiency; therefore, hybrid Taguchi-real coded DNA (HTRDNA) algorithm is proposed. Against the external unknown disturbance and the system uncertainty, sliding mode control theory is applied to design a controller and estimator for compensating the occurrence of the above problems.
[1] Adleman, L.M., “Molecular computation of solutions to combinatorial problems,” Science, vol. 266, no. 5187, pp. 1021-1024, 1994.
[2] Anderson-Cook, C.M., Practical Genetic Algorithms: Taylor & Francis, 2005.
[3] Anderson, B.D. and J.B. Moore, Optimal Control: Linear Quadratic Methods: Courier Corporation, 2007.
[4] Ang, K.H., G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE transactions on control systems technology, vol. 13, no. 4, pp. 559-576, 2005.
[5] Åström, K.J. and T. Hägglund, PID Controllers: Theory, Design, and Tuning: Instrument society of America Research Triangle Park, NC, 1995.
[6] Bingi, K., et al. “Optimal PID control of pH neutralization plant.” in Robotics and Manufacturing Automation (ROMA), 2016 2nd IEEE International Symposium on. IEEE, 2016.
[7] Chang, W.-D. and J.-J. Yan, “Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems,” Chaos, Solitons & Fractals, vol. 26, no. 1, pp. 167-175, 2005.
[8] Chen, W.-H., et al., “A nonlinear disturbance observer for robotic manipulators,” IEEE Transactions on industrial Electronics, vol. 47, no. 4, pp. 932-938, 2000.
[9] Chou, J.-H., S.-H. Chen, and J.-J. Li, “Application of the Taguchi-genetic method to design an optimal grey-fuzzy controller of a constant turning force system,” Journal of Materials Processing Technology, vol. 105, no. 3, pp. 333-343, 2000.
[10] Feng, Y., et al., “Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3424-3431, 2009.
[11] Fnaiech, M.A., et al., “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 354-364, 2010.
[12] Gao, W. and J.C. Hung, “Variable structure control of nonlinear systems: A new approach,” IEEE transactions on Industrial Electronics, vol. 40, no. 1, pp. 45-55, 1993.
[13] Gen, M. and R. Cheng, Genetic Algorithms and Engineering Optimization: John Wiley & Sons, 2000.
[14] Grefenstette, J.J., “Optimization of control parameters for genetic algorithms,” IEEE Transactions on systems, man, and cybernetics, vol. 16, no. 1, pp. 122-128, 1986.
[15] Kennedy, J., Particle Swarm Optimization. Encyclopedia of machine learning: Springer. 760-766, 2011.
[16] Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing,” science, vol. 220, no. 4598, pp. 671-680, 1983.
[17] Lin, J.-S., et al.,“Design and implementation of digital secure communication based on synchronized chaotic systems,” Digital Signal Processing, vol. 20, no. 1, pp. 229-237, 2010.
[18] Lin, J., et al., “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics,” Journal of Materials Processing Technology, vol. 102, no. 1-3, pp. 48-55, 2000.
[19] Madhuranthakam, C., et al., “Optimal PID controller parameters for first order and second order systems with time delay using a connectionist approach,” Engineering Optimization, vol. 42, no. 3, pp. 295-303, 2010.
[20] Madsen, J.M., L.S. Shieh, and S.M. Guo, “STATE‐SPACE DIGITAL PID CONTROLLER DESIGN FOR MULTIVARIABLE ANALOG SYSTEMS WITH MULTIPLE TIME DELAYS,” Asian Journal of Control, vol. 8, no. 2, pp. 161-173, 2006.
[21] Phadke, M.S., Quality Engineering Using Robust Design: Prentice Hall PTR, 1995.
[22] Qian, R., et al., “Novel Adaptive Sliding Mode Control with Nonlinear Disturbance Observer for SMT Assembly Machine,” Mathematical Problems in Engineering, vol. 2016, 2016.
[23] Rosinová, D. and V. Veselý, “Robust PID decentralized controller design using LMI,” International Journal of Computers Communications & Control, vol. 2, no. 2, pp. 195-204, 2007.
[24] Ross, P.J. and P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design: McGraw-Hill New York, 1988.
[25] Shariati, A., H. Taghirad, and A. Fatehi, “A neutral system approach to H∞ PD/PI controller design of processes with uncertain input delay,” Journal of Process Control, vol. 24, no. 3, pp. 144-157, 2014.
[26] Shieh, S.L., M.H. Dib, and G. Sekar. “Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region.” in IEE Proceedings D (Control Theory and Applications). IET, 1987.
[27] Singla, M., et al., “A new optimal sliding mode controller design using scalar sign function,” ISA transactions, vol. 53, no. 2, pp. 267-279, 2014.
[28] Tan, K., S. Huang, and R. Ferdous, “Robust self-tuning PID controller for nonlinear systems,” Journal of Process Control, vol. 12, no. 7, pp. 753-761, 2002.
[29] Tsai, J.-T., T.-K. Liu, and J.-H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Transactions on evolutionary computation, vol. 8, no. 4, pp. 365-377, 2004.
[30] Wai, R.-J. and H.-H. Chang, “Backstepping wavelet neural network control for indirect field-oriented induction motor drive,” IEEE Transactions on Neural Networks, vol. 15, no. 2, pp. 367-382, 2004.
[31] Wang, J., Q. Zhang, and D. Xiao, “PD feedback H∞ control for uncertain singular neutral systems,” Advances in Difference Equations, vol. 2016, no. 1, pp. 29, 2016.
[32] Wu, C.-T., J.-P. Tien, and T.-H.S. Li. “Integration of DNA and real coded GA for the design of PID-like fuzzy controllers.” in Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. IEEE, 2012.
[33] Yourui, H., C. Xiuqiao, and H. Yihua. “Optimization for parameter of PID based on DNA genetic algorithm.” in Neural Networks and Brain, 2005. ICNN&B'05. International Conference on. IEEE, 2005.
[34] Zheng, F., Q.-G. Wang, and T.H. Lee, “On the design of multivariable PID controllers via LMI approach,” Automatica, vol. 38, no. 3, pp. 517-526, 2002.
[35] Zhi, D., L. Xu, and B.W. Williams, “Model-based predictive direct power control of doubly fed induction generators,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 341-351, 2010.
校內:2023-07-30公開