簡易檢索 / 詳目顯示

研究生: 陳信宏
Chen, Hsin-Hung
論文名稱: 新型三相五階層換流器
A Novel Three-Phase Five-Level Inverter
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 多階層換流器三相
外文關鍵詞: Multi-level, inverter, three-phase
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨在於研製一新型三相五階層換流器。主要架構包含12個功率開關與12個二極體實現三相五階層交流之輸出。本文所提出之三相五階層換流器之輸出為Y接,線電壓為五階層。三相電路架構有利於提高輸出之功率,相較於傳統三相換流器,輸出電壓多階層控制可以有效降低輸出之總諧波失真,本文所提出之三相五階層換流器,使用較少之功率元件數。文中會說明此電路之動作原理及控制流程,並研製一組雛型電路,輸入電壓500 V輸出功率6 kW、THD 3.62%、效率98.4%之三相五階層換流器來驗證本文所提理論之正確性及電路實作之可行性。

    In this thesis, a novel three-phase five-level inverter is proposed. The proposed topology constructed of twelve power switches and twelve diodes to achieve a three-phase five-level AC Y-connected output. The output line-to-line voltage is five levels and total harmonic distortion is lower. Compared to the traditional three-phase inverters, the proposed three-phase five-level inverter can achieve the five output voltage levels with fewer components. In this thesis, the details of the mode analyses and control methods are discussed. An experimental prototype with input voltage 500 V, output power 6 kW, THD 3.62%, and efficiency 98.40% is implemented to verify the theory and feasibility of the proposed topology.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與內容 2 1.3 論文之大綱 3 第二章 現有多階層換流器架構之介紹與分析 4 2.1 前言 4 2.2 二極體箝位式多階層換流器 4 2.3 飛輪電容式多階層換流器 7 2.4 串接式多階層換流器 10 2.5 簡易型多階層換流器 13 2.6 各式多階層換流器之比較 16 第三章 新型三相五階層換流器 17 3.1 前言 17 3.2 圖新型三相五階層換流器之架構 18 3.3 基頻切換控制法之模式分析 19 3.4 基頻切換控制法輸入電壓與輸出電壓之關係 30 3.5 正弦脈波寬度調變控制法之模式分析 34 第四章 模擬與實作結果 38 4.1 前言 38 4.2 模擬結果 39 4.2.1 基頻切換控制法模擬結果 39 4.2.2 正弦脈波寬度調變控制法模擬結果 42 4.3 實作結果 44 4.3.1 基頻切換控制法實驗結果 45 4.3.2 正弦脈波寬度調變控制法實驗結果 48 第五章 結論與未來研究方向 52 5.1 結論 52 5.2 未來研究方向 53 參考文獻 54 表目錄 表2.1 三階層二極體箝位式換流器之操作模式。 5 表2.2 三階層飛輪電容式換流器之操作模式。 8 表2.3 三階全橋式換流器之操作模式。 11 表2.4 簡易型五階層換流器一之操作模式。 13 表2.5 簡易型五階層換流器二之操作模式。 14 表2.6 三相五階層換流器之元件數比較表。 16 表4.1 電路規格。 38 表4.2 元件參數。 39 表4.3 基頻切換控制法實作量測結果。 47 表4.4 正弦脈波寬度調變控制法實作量測結果。 50 圖目錄 圖2.1 三階層二極體箝位式換流器。 5 圖2.2 五階層二極體箝位式換流器。 6 圖2.3 三相五階層二極體箝位式換流器。 7 圖2.4 三階層飛輪電容式多階層換流器。 8 圖2.5 五階層飛輪電容式多階層換流器。 9 圖2.6 三相五階層飛輪電容式多階層換流器。 10 圖2.7 三階層全橋式換流器。 11 圖2.8 五階層串接式換流器。 12 圖2.9 三相五階層串接式換流器。 12 圖2.10 簡易型五階層換流器一。 13 圖2.11 簡易型五階層換流器二。 14 圖2.12 簡易型七階層換流器。 15 圖2.13 三相簡易型五階層換流器。 15 圖3.1 新型三相五階層換流器。 17 圖3.2 新型三相五階層換流器初始架構。 18 圖3.3 基頻切換控制法模式分析。 19 圖3.4 基頻切換控制法開關導通狀態。 20 圖3.5 基頻切換控制法模式1。 22 圖3.6 基頻切換控制法模式2。 22 圖3.7 基頻切換控制法模式3。 23 圖3.8 基頻切換控制法模式4。 24 圖3.9 基頻切換控制法模式5。 24 圖3.10 基頻切換控制法模式6。 25 圖3.11 基頻切換控制法模式7。 26 圖3.12 基頻切換控制法模式8。 26 圖3.13 基頻切換控制法模式9。 27 圖3.14 基頻切換控制法模式10。 28 圖3.15 基頻切換控制法模式11。 29 圖3.16 基頻切換控制法模式12。 30 圖3.17 Vab、Vbc及Vca線電壓波形。 31 圖3.18 三相負載。 32 圖3.19 Vac為Vdc時,節點b電壓為Vdc之三相負載。 32 圖3.20 Vac為Vdc時,節點b為0 V之三相負載。 33 圖3.21 Van、Vbn、Vcn相電壓波形。 33 圖3.22 三相正弦波命令與模式分析。 34 圖3.23 單相正弦脈波寬度調變示意波形。 35 圖3.24 Vab正弦脈波寬度調變示意波形。 36 圖3.25 正弦脈波寬度調變控制法開關導通狀態。 37 圖4.1 PSIM模擬輸出線電壓vab、vbc及vca之波形。 40 圖4.2 PSIM模擬輸出相電流ia、ib及ic之波形。 40 圖4.3 PSIM模擬輸出相電壓van、vbn及vcn之波形。 41 圖4.4 PSIM模擬換慮波後之輸出相電壓van、vbn及vcn之波形。 41 圖4.5 PSIM模擬輸出線電壓vab、vbc及vca之波形。 42 圖4.6 PSIM模擬輸出相電流ia、ib及ic之波形。 43 圖4.7 PSIM模擬慮波後輸出相電壓van、vbn及vcn之波形。 43 圖4.8 實作之輸出線電壓vab、vbc、vca及輸入電壓Vdc之波形。 45 圖4.9 基頻切換控制法實作電路之波形。 45 圖4.10 基頻切換控制法實作電路之量測。 46 圖4.11 基頻切換控制法實作之效率曲線。 47 圖4.12 功率開關元件S1、S2、S7及S10之控制訊號波形。 48 圖4.13 實作之輸出線電壓vab、vbc、vca及輸入電壓Vdc之波形。 49 圖4.14 正弦脈波寬度調變控制法實作電路之波形。 49 圖4.15正弦脈波寬度調變控制法實作電路之量測。 50 圖4.16 正弦脈波寬度調變控制法實作之效率曲線。 51

    [1] J. Rodríguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications,” IEEE Trans. on Ind. Electronics, vol. 49, no. 4, pp. 724-738, August 2002.
    [2] S. Busquets-Monge, J. Rocabert, P. Rodríguez, S. Alepuz, and J. Bordonau, “Multilevel Diode-Clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array,” IEEE Trans. on Ind. Electronics, vol. 55, no. 7, pp. 2713-2723, July 2008.
    [3] O. Bouhali, B. Francois, E. M. Berkouk, and C. Saudemont, “DC Link Capacitor Voltage Balancing in a Three-Phase Diode Clamped Inverter Controlled by a Direct Space Vector of Line-to-Line Voltages,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1636-1648, September 2007.
    [4] A. Nabae, I. Takahashi, and H. Akagi, ” A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans. on Ind. Applications, vol. IA-17, no. 5, pp. 518-523, September/October 1981.
    [5] S. Karugaba, A. Muetze, and O. Ojo, “On the Common-Mode Voltage in Multilevel Multiphase Single- and Double-Ended Diode-Clamped Voltage-Source Inverter Systems,” IEEE Trans. on Ind. Applications, vol. 48, no. 6, pp. 2079-2091, November/December 2012.
    [6] X. Yuan and I. Barbi, ” Fundamentals of a New Diode Clamping Multilevel Inverter,” IEEE Trans. on Power Electronics, vol. 15, no. 4, pp.711-718, July 2000.
    [7] A. Shukla, A. Ghosh, and A. Joshi, “Hysteresis Current Control Operation of Flying Capacitor Multilevel Inverter and Its Application in Shunt Compensation of Distribution Systems,” IEEE Trans. on Power Delivery, vol. 22, no. 1, pp. 396-405, January 2007.
    [8] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Trans. on Ind. Electronics, vol. 52, no. 3, pp. 879-888, June 2005.
    [9] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active Capacitor Voltage Balancing in Single-Phase Flying-Capacitor Multilevel Power Converters,” IEEE Trans. on Ind. Electronics, vol. 59, no. 2, pp. 769-779, February 2012.
    [10] I. D. Kim, E. C. Nho, H. G. Kim, and J. S. Ko, “A Generalized Undeland Snubber for Flying Capacitor Multilevel Inverter and Converter,” IEEE Trans. on Ind. Electronics, vol. 51, no. 6, pp. 1290-1296, December 2004.
    [11] A. Shukla, A. Ghosh, and A. Joshi, “Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter,” IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 518-529, March 2008.
    [12] F. Z. Peng, J. W. McKeever, and D. J. Adams, “A Power Line Conditioner Using Cascade Multilevel Inverters for Distribution Systems,” IEEE Trans. on Ind. Applications, vol. 34, no. 6, pp. 1293-1298, November/December 1998.
    [13] F. Filho, H. Z. Maia, T. H. A. Mateus, B. Ozpineci, L. M. Tolbert, and J. O. P. Pinto, “Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources,” IEEE Trans. on Ind. Electronics, vol. 60, no. 5, pp. 1955-1962, May 2013.
    [14] F. Z. Peng and J. S. Lai, “Dynamic Performance and Control of a Static Var Generator Using Cascade Multilevel Inverters,” IEEE Trans. on Ind. Applications, vol. 33, no. 3, pp. 748-755, May/June 1997.
    [15] H. Taghizadeh and M. Tarafdar Hagh, “Harmonic Elimination of Cascade Multilevel Inverters with Nonequal DC Sources Using Particle Swarm Optimization,” IEEE Trans. on Ind. Electronics, vol. 57, no. 11, pp. 3678-3684, November 2010.
    [16] A. M. Massoud, S. J. Finney, A. J. Cruden, and B. W. Williams, “Three-Phase, Three-Wire, Five-Level Cascaded Shunt Active Filter for Power Conditioning, Using Two Different Space Vector Modulation Techniques,” IEEE Trans. on Power Delivery, vol. 22, no. 4, pp. 2349-2361, October 2007.
    [17] G. Ceglia, V. Guzmán, C. Sánchez, F. Ibáñez, J. Walter, and M. I. Giménez, “A New Simplified Multilevel Inverter Topology for DC–AC Conversion,” IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 311-1319, September 2006.
    [18] M. Ahmed and S. Mekhilef, “ Three-Phase Three-Level Voltage Source Inverter with a Three-Phase Two-Level Inverter as a Main Circuit,” 4th IET Conference on Power Electronics, Machines and Drives 2008, April 2-4, pp. 640-644.
    [19] N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-Phase Seven-Level Grid-Connected Inverter for Photovoltaic System,” IEEE Trans. on Ind. Electronics, vol. 58, no. 6, pp. 2435-2443, June 2011.
    [20] C. L. Chen, Y. Wang, J. S. Lai, Y.S. Lee, and D. Martin, “Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications,” IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 6-15, Jan. 2010.
    [21] J. S. Lai and F. Z. Peng, “Multilevel Converters–A New Breed of Power Converters,” IEEE Trans. on Ind. Applications, vol. 32, pp. 509–517, May/June 1996
    [22] N. A. Rahim and J. Selvaraj, “Multistring Five-Level Inverter With Novel PWM Control Scheme for PV Application,” IEEE Trans. on Ind. Applications, vol. 57, no. 6, pp. 2111 - 2123, June. 2010.
    [23] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-Efficiency Power Conversion System for Kilowatt-Level Stand-Alone Generation Unit with Low Input Voltage,” IEEE Trans. on Ind. Applications, vol. 55, no. 10, pp. 3702-3714, Oct. 2008.
    [24] A. Emadi, S. S. Williamson, and A. Khaligh, “Power Electronics Intensive Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular Power Systems,” IEEE Trans. on Power Electronics, vol. 21, no. 3, pp. 567–577, May 2006.
    [25] P. G. Barbosa, H. A. C. Braga, M. C. B. Rodrigues, and E. C. Teixeira, “Boost Current Multilevel Inverter and Its Application on Single-Phase Grid-Connected Photovoltaic Systems,” IEEE Trans. on Power Electronics, vol. 21, no. 4, pp. 1116 - 1124, July. 2006.
    [26] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel Inverter Topologies for Stand-Alone PV Systems,” IEEE Trans. on Ind. Applications, vol. 55, no. 7, pp. 2703–2712, Jul. 2008.
    [27] M. Marchesoni and P. Tensa, “Diode-Clamped Multilevel Converters: a Practicable Way to Balance DC-link Voltages,” IEEE Trans. on Ind. Applications, vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
    [28] G. J. Su, “Multilevel DC-Link Inverter,” IEEE Trans. on Ind. Applications, vol. 41, no. 3, pp. 848 - 854, May/June 2005.
    [29] P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded Multilevel Inverter with Regeneration Capability and Reduced Number of Switches,” IEEE Trans. on Ind. Applications, vol. 55, no. 3, pp. 1059–1066, Mar. 2008.
    [30] A. Chen and X. He, “Research on Hybrid-Clamped Multilevel-Inverter Topologies,” IEEE Trans. on Ind. Applications, vol. 53, no. 6, pp. 1898 - 1907, Dec. 2010.
    [31] 蔡佳原,「單相新型多階層換流器研製」,國立成功大學碩士論文,2012。
    [32] 劉偉霖,「新型單相多階層換流器之研製」,國立成功大學碩士論文,2012。
    [33] 江錫津,「應用空間向量脈寬調變技術之數位式高攻因單相/三相電力轉換器」,國立雲林科技大學碩士論文,2003。

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE