| 研究生: |
詹鈞皓 Chan, Chun-Hao |
|---|---|
| 論文名稱: |
高效能氮化銦鋁鎵/氮化鎵金氧半高電子遷移率電晶體於功率元件之應用 High Performance InAlGaN/GaN MOSHEMTs for Power Applications |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 空乏型 、增強型 、氮化銦鋁鎵/氮化鎵 、高電子遷移率電晶體 、氟離子摻雜 |
| 外文關鍵詞: | Depletion-Mode, Enhancement-Mode, InAlGaN/GaN, High Electron Mobility Transistor (HEMT), Fluorine Ion Doping |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] T. P. Chow and R. Tyagi, “Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 84-88, May 1993.
[2] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1383-1385, Dec. 2010.
[3] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Electron Device Lett., vol. 53, no. 9, pp. 2207-2215, Feb. 2006.
[4] L.Y. Su, F. Lee, and J. J. Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Electron Device Lett., vol. 61, no. 2, pp. 460-465, Feb. 2014.
[5] H. Zhou, X. Lou, S. B. Kim, K. D. Chabak, R. G. Gordon, and P. D. Ye, “Enhancement-Mode AlGaN/GaN Fin-MOSHEMTs on Si Substrate With Atomic Layer Epitaxy MgCaO,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1294-1297, Sep. 2017.
[6] Y. P. Huang, C. C. Huang, C. S. Lee, and W. C. Hsu, “High-Performance Normally-OFF AlGaN/GaN Fin-MISHEMT on Silicon With Low Work Function Metal-Source Contact Ledge,” IEEE Trans. Electron Devices, vol. 67, no. 12, Dec. 2020.
[7] Y. P. Huang, W. C. Hsu, H. Y. Liu, and C. S. Lee, “Enhancement-Mode Tri-gate Nanowire InAlN/GaN MOSHEMT for Power Application,” IEEE Electron Device Lett., vol. 40, no. 6, Jun. 2019.
[8] Y. P. Huang, C. S. Lee, and W. C. Hsu, “Enhancement-Mode InAlN/GaN Power MOSHEMT on Silicon With Schottky Tri-Drain Extension,” IEEE Electron Device Lett., vol. 41, no. 7, Jul. 2020.
[9] H. R. Mojaver, J. L. Gosselin, and P. Valizadeh, “Use of a bilayer lattice-matched AllnGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors,” Journal of Applied Physics, vol. 121, no. 24, pp. 244502-1-244502-6, Jun. 2017.
[10] M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability. Switzerland: Spring, 2017. [online]. Available: https://www.springer.com/gp/book/97833194319470.
[11] G. P. Merceroz, G. Cosendey, J. F. Carlin, R. Butté, and N. Grandjean, “Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates,” Journal of Applied Physics, Art. no. 063506, doi: 10.1063/1.4790424, Feb. 2013.
[12] D. Biswas, H. Fujita, N. Torii, and T. Egawa, “Effect of In composition on electrical performance of AlInGaN/GaN-based metal insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si,” Journal of Applied Physics, vol. 125, Art. no. 225707, Jun. 2019.
[13] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-Mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor With Fluorine Plasma Treatment by ICP,” IEEE Electron Device Lett., vol. 38, no. 10, pp. 1421–1424, Aug. 2017.
[14] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 58, no. 2, pp. 460–465, Dec. 2010.
[15] Z. Zhang, K. Fu, X. Deng, X. Zhang, Y. Fan, S. Sun, L. Song, Z. Xing, W. Huang, G. Yu, Y. Cai, and B. Zhang, “Normally Off AlGaN/GaN MIS-High-Electron Mobility Transistors Fabricated by Using Low Pressure Chemical Vapor Deposition Si3N4 Gate Dielectric and Standard Fluorine Ion Implantation,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1128–1131, Sep. 2015.
[16] E. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics., vol. 2, no. 3, pp. 287–292, Sep. 1879.
[17] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, Mar. 1986.
[18] E Ruska, “The early development of electron lenses and electron microscopy,” Microsc Acta Suppl. 1980;(Suppl 5):1‐140.
[19] I. Sanyal, Y. C. Lee, Y. C. Chen, and J. I. Chyi, “Achieving high electron mobility in AlInGaN/GaN heterostructures: The correlation between thermodynamic stability and electron transport properties,” Appl. Phys. Lett. 114, Art. no. 222103, May 2019.
[20] J. Sikula, M. Levinshtein, “Advanced experimental methods for noise research in nanoscale electronics devices,” Springer Science., vol. 151. 2006.
[21] M. Zhu, et al., “High Performance Tri-Gate GaN Power MOSHEMTs on Silicon Substrate,” IEEE Electron Device Letters, vol. 38, no. 3, pp. 367-370, Jan. 2017.
[22] B. J. Baliga, “Semiconductors for high-voltage, vertical channel field-effect transistors,” J. Appl. Phys., vol.53, no. 3, pp.1759-1764, Mar. 1982.
[23] J. Lei, J. Wei, G. Tang, Z. Zhang, Q. Qian, Z. Zheng, M. Hua, and K. J. Chen, “Reverse-Blocking Normally-OFF GaN Double-Channel MOS-HEMT With Low Reverse Leakage Current and Low ON-State Resistance,” IEEE Electron Device Lett., vol. 39, no. 7, Jul. 2018.
[24] C. H. Wu, P. C. Han, S. C. Liu, T. E. Hsieh, F. J. Lumbantoruan, Y. H. Ho, J. Y. Chen, K. S. Yang, H. C. Wang, Y. K. Lin, P. C. Chang, Q. H. Luc, Y. C. Lin, and E. Y. Chang, “High-Performance Normally-OFF GaN MIS-HEMTs Using Hybrid Ferroelectric Charge Trap Gate Stack (FEG-HEMT) for Power Device Applications,” IEEE Electron Device Lett., vol. 39, no. 7, Jul. 2018.
[25] M. Tao, S. Liu, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. Cheng, B. Shen, and M. Wang, “Characterization of 880 V Normally Off GaN MOSHEMT on Silicon Substrate Fabricated With a Plasma-Free, Self-Terminated Gate Recess Process,” IEEE Trans. Electron Devices, vol. 65, no. 4, Apr. 2018.
[26] Y. Zhong, S. Su, X. Chen, Y. Zhou, J. He, H. Gao, X. Zhan, X. Guo, J. Liu, Q. Sun, and H. Yang, “Normally-off HEMTs With Regrown p-GaN Gate and Low-Pressure Chemical Vapor Deposition SiNx Passivation by Using an AlN Pre-Layer,” IEEE Electron Device Lett., vol. 40, no. 9, Sep. 2019.
[27] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, M. J. Uren, M. Kuball, C. J. Humphreys, and P. A. Houston, “Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V,” Applied Physics Express 8, Art. no. 036502, 2015.
校內:2026-08-13公開