簡易檢索 / 詳目顯示

研究生: 詹鈞皓
Chan, Chun-Hao
論文名稱: 高效能氮化銦鋁鎵/氮化鎵金氧半高電子遷移率電晶體於功率元件之應用
High Performance InAlGaN/GaN MOSHEMTs for Power Applications
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 59
中文關鍵詞: 空乏型增強型氮化銦鋁鎵/氮化鎵高電子遷移率電晶體氟離子摻雜
外文關鍵詞: Depletion-Mode, Enhancement-Mode, InAlGaN/GaN, High Electron Mobility Transistor (HEMT), Fluorine Ion Doping
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract iii 誌謝 v Content viii Table Captions x Figure Captions xi Chapter1 Introduction 1 1-1 Background 1 1-2 GaN-based HEMT 2 1-3 Motivaition - InAlGaN/GaN Heterostructure 3 1-4 Organization 4 Chapter2 Device Structure and Fabrication 6 2-1 Device Structure 6 2-2 Fabrication 6 2-2-1 Pre-Cleaning 6 2-2-2 Mesa Isolation 7 2-2-3 Source/Drain Ohmic Contact 8 2-2-4 Fluorine Ion Doping 9 2-2-5 Gate Dielctric(Al2O3) Deposition by USPD 10 2-2-6 Gate Electrode Deposition 11 Chapter3 Results and Discussion 13 3-1 Physical Analyses 13 3-1-1 Hall Measurement 13 3-1-2 X-ray Diffraction 15 3-1-3 X-ray Photoelectron Spectroscopy 15 3-1-4 Atomic Force Microscopy 16 3-1-5 Transmission Electron Microscopy and Energy-dispersive X-ray Spectroscopy 18 3-1-6 Secondary Ion Mass Spectroscopy 19 3-2 Electrical Analyses 20 3-2-1 DC Transfer and Output Characteristics 21 3-2-2 Three-Terminal Breakdown Characteristics 24 3-2-3 Temperature Stability 25 3-2-4 Low Frequency Noise Characteristics 26 3-2-5 Power Characteristics and Device Overall Performance 28 Chapter4 Conclusion and Future Work 31 4-1 Conclusion 31 4-2 Future Work 32 References 33 Figures 37

    [1] T. P. Chow and R. Tyagi, “Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 84-88, May 1993.
    [2] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1383-1385, Dec. 2010.
    [3] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Electron Device Lett., vol. 53, no. 9, pp. 2207-2215, Feb. 2006.
    [4] L.Y. Su, F. Lee, and J. J. Huang, “Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer,” IEEE Electron Device Lett., vol. 61, no. 2, pp. 460-465, Feb. 2014.
    [5] H. Zhou, X. Lou, S. B. Kim, K. D. Chabak, R. G. Gordon, and P. D. Ye, “Enhancement-Mode AlGaN/GaN Fin-MOSHEMTs on Si Substrate With Atomic Layer Epitaxy MgCaO,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1294-1297, Sep. 2017.
    [6] Y. P. Huang, C. C. Huang, C. S. Lee, and W. C. Hsu, “High-Performance Normally-OFF AlGaN/GaN Fin-MISHEMT on Silicon With Low Work Function Metal-Source Contact Ledge,” IEEE Trans. Electron Devices, vol. 67, no. 12, Dec. 2020.
    [7] Y. P. Huang, W. C. Hsu, H. Y. Liu, and C. S. Lee, “Enhancement-Mode Tri-gate Nanowire InAlN/GaN MOSHEMT for Power Application,” IEEE Electron Device Lett., vol. 40, no. 6, Jun. 2019.
    [8] Y. P. Huang, C. S. Lee, and W. C. Hsu, “Enhancement-Mode InAlN/GaN Power MOSHEMT on Silicon With Schottky Tri-Drain Extension,” IEEE Electron Device Lett., vol. 41, no. 7, Jul. 2020.
    [9] H. R. Mojaver, J. L. Gosselin, and P. Valizadeh, “Use of a bilayer lattice-matched AllnGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors,” Journal of Applied Physics, vol. 121, no. 24, pp. 244502-1-244502-6, Jun. 2017.
    [10] M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability. Switzerland: Spring, 2017. [online]. Available: https://www.springer.com/gp/book/97833194319470.
    [11] G. P. Merceroz, G. Cosendey, J. F. Carlin, R. Butté, and N. Grandjean, “Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates,” Journal of Applied Physics, Art. no. 063506, doi: 10.1063/1.4790424, Feb. 2013.
    [12] D. Biswas, H. Fujita, N. Torii, and T. Egawa, “Effect of In composition on electrical performance of AlInGaN/GaN-based metal insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si,” Journal of Applied Physics, vol. 125, Art. no. 225707, Jun. 2019.
    [13] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-Mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor With Fluorine Plasma Treatment by ICP,” IEEE Electron Device Lett., vol. 38, no. 10, pp. 1421–1424, Aug. 2017.
    [14] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 58, no. 2, pp. 460–465, Dec. 2010.
    [15] Z. Zhang, K. Fu, X. Deng, X. Zhang, Y. Fan, S. Sun, L. Song, Z. Xing, W. Huang, G. Yu, Y. Cai, and B. Zhang, “Normally Off AlGaN/GaN MIS-High-Electron Mobility Transistors Fabricated by Using Low Pressure Chemical Vapor Deposition Si3N4 Gate Dielectric and Standard Fluorine Ion Implantation,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1128–1131, Sep. 2015.
    [16] E. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics., vol. 2, no. 3, pp. 287–292, Sep. 1879.
    [17] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, Mar. 1986.
    [18] E Ruska, “The early development of electron lenses and electron microscopy,” Microsc Acta Suppl. 1980;(Suppl 5):1‐140.
    [19] I. Sanyal, Y. C. Lee, Y. C. Chen, and J. I. Chyi, “Achieving high electron mobility in AlInGaN/GaN heterostructures: The correlation between thermodynamic stability and electron transport properties,” Appl. Phys. Lett. 114, Art. no. 222103, May 2019.
    [20] J. Sikula, M. Levinshtein, “Advanced experimental methods for noise research in nanoscale electronics devices,” Springer Science., vol. 151. 2006.
    [21] M. Zhu, et al., “High Performance Tri-Gate GaN Power MOSHEMTs on Silicon Substrate,” IEEE Electron Device Letters, vol. 38, no. 3, pp. 367-370, Jan. 2017.
    [22] B. J. Baliga, “Semiconductors for high-voltage, vertical channel field-effect transistors,” J. Appl. Phys., vol.53, no. 3, pp.1759-1764, Mar. 1982.
    [23] J. Lei, J. Wei, G. Tang, Z. Zhang, Q. Qian, Z. Zheng, M. Hua, and K. J. Chen, “Reverse-Blocking Normally-OFF GaN Double-Channel MOS-HEMT With Low Reverse Leakage Current and Low ON-State Resistance,” IEEE Electron Device Lett., vol. 39, no. 7, Jul. 2018.
    [24] C. H. Wu, P. C. Han, S. C. Liu, T. E. Hsieh, F. J. Lumbantoruan, Y. H. Ho, J. Y. Chen, K. S. Yang, H. C. Wang, Y. K. Lin, P. C. Chang, Q. H. Luc, Y. C. Lin, and E. Y. Chang, “High-Performance Normally-OFF GaN MIS-HEMTs Using Hybrid Ferroelectric Charge Trap Gate Stack (FEG-HEMT) for Power Device Applications,” IEEE Electron Device Lett., vol. 39, no. 7, Jul. 2018.
    [25] M. Tao, S. Liu, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. Cheng, B. Shen, and M. Wang, “Characterization of 880 V Normally Off GaN MOSHEMT on Silicon Substrate Fabricated With a Plasma-Free, Self-Terminated Gate Recess Process,” IEEE Trans. Electron Devices, vol. 65, no. 4, Apr. 2018.
    [26] Y. Zhong, S. Su, X. Chen, Y. Zhou, J. He, H. Gao, X. Zhan, X. Guo, J. Liu, Q. Sun, and H. Yang, “Normally-off HEMTs With Regrown p-GaN Gate and Low-Pressure Chemical Vapor Deposition SiNx Passivation by Using an AlN Pre-Layer,” IEEE Electron Device Lett., vol. 40, no. 9, Sep. 2019.
    [27] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, M. J. Uren, M. Kuball, C. J. Humphreys, and P. A. Houston, “Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V,” Applied Physics Express 8, Art. no. 036502, 2015.

    無法下載圖示 校內:2026-08-13公開
    校外:2026-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE