| 研究生: |
黃信榮 Huang, Shin-Rung |
|---|---|
| 論文名稱: |
複合式微結構於兩相流均溫基板之探討 Study of Two Phase Flow Micro Heat Spreader Using Hybrid Structure |
| 指導教授: |
邵揮洲
Shaw, Heiu-Jou 沈聖智 Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 熱管 、雙相流 、複合式結構 、毛細結構 、均熱基板 |
| 外文關鍵詞: | Wick Structure, Heat Pipe, Heat Spreader, Two Phase Flow, Complex |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙相流散熱技術常見於均溫基板內以解決高熱密度的熱點問題,此作動機制是透過工作流體之相變化進行均熱與散熱行為,當此技術受到重力影響而使熱源無法接觸工作流體時,其效能便會大幅降低,甚至造成均熱基板的失效。故為減輕重力對均溫基板內工作流體的影響,本文整合溝槽式(Rectangular groove)結構與微細網狀(Micro-mesh)結構設計一高毛細力的複合式結構,並透過改變網狀結構的層數觀察均溫基板在不同傾斜角度下的熱性能變化;首先本研究藉由模擬軟體之計算,找出層數的變化與溫度分佈及熱阻間的關係,並透過實驗制定本複合式結構之最佳填充量,最後透過完整的實驗數據探討在同一尺寸的微溝槽下,不同的網狀層數在不同之傾斜角下對於熱阻與最大熱傳量之影響。由本論文實驗結果顯示,不論複合式結構的網格層數多寡,均溫基板皆會受到重力的影響,差別在於熱性能遞減的程度,當給予一傾斜角-15~-45度時,層數越多的均溫基板在蒸發端的熱對流係數越高(三層複合式結構在傾斜-15~-45度時約在390W/m2K~3600間W/m2K),說明網格所提供的毛細力確實可輔助工作流體的輸送,減低重力的影響。
In order to solve the hot spot problem, many new dispersing heat approaches is applied; the heat spreader is one of them. Due to the uniform temperature substrate is through the change of working fluid to make disperse heat. If the heat source can’t contact the working fluid, the heat spreader couldn’t use efficiently. Hence, the point of project is to design the micro heat spreader using hybrid structure by combing rectangular groove and mesh screen. The hybrid structure can take out the heat equally and solve the hot spot problem which leads to the spreader thermal, and offer the best dispersing heat approach that locate the heat source and decrease the effect that the gravitation is to the uniform temperature substrate. First of all, the temperature distribution and thermal resistance is calculated by IcePak, a CFD software. Than the best fill amount of the hybrid structure can be found by some experiment. According to the experiment result, thermal response of the heat spreader can be discussed. It is evident that no matter how many the mesh layer of hybrid structure is, the heat spreader would be affected by gravity. When the heat spreader is slanted between -15 to -45 degrees, the heat transfer coefficient of heat spreader which comprises more mesh layer is larger. And the experiment result shows that the mesh layer can assist transport of working fluid such that the influence of gravity could be reduced.
【1】http://www.intel.com/
【2】http://www.Lumileds.com/
【3】http://www.eettaiwan.com/
【4】V. Wuttijumnong, T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito and T. Nguyen, “Overview Latest Technologies Using Heat Pipe and Vapor Chamber for Cooling of High Heat Generation Notebook Computer” IEEE SEMI-THERM Symposium, Vol. 20, pp221-224, 2004.
【5】J. Wei, “Measurement of Vapor Chamber Performance”, IEEE SEMI-THERM Symposium, pp.191-194, 2003.
【6】Y. Cao, M. Cao, “Experiments and Analyses of Flat Miniature Heat Pies”, Proceedings of the Intersociety Energy Conversion Engineering Conference, pp. 1402-1406, Vol. 2, 1996
【7】A. Faghri, “Heat Pipe Science and Technology”, Taylor & Francis, 1995.
【8】G.P. Peterson, “An Introduction to Heat Pipes”, John Wiley & Sons, New York, 1994.
【9】依日光編著”熱管技術理論實務”,復漢出版社印行,2000.
【10】L. L. Vasiliev, “Micro and Miniature Heat Pipe – Electronic Component Coolers” Applied Thermal Engineering, Vol. 28, pp.266-273, 2008.
【11】R. Hopkins, A. Faghri, D. Khrustalev, “Flat Miniature Heat Pipes With Micro Capillary Grooves” Journal of Heat Transfer, pp. 102-109, Vol. 121, 1999.
【12】C. Gillot, Y. Avenas, N. Cezac, G. Poupom, C. Schaeffer, E. Fournier, “Silicon Heat Pipe Used as Thermal Spreaders” IEEE Transactions on Components and Packaging Technology, pp. 332-339,Vol. 26, 2003.
【13】K. H. Oh, M. K. Lee, S. H. Jeong, “Design and Fabrication of a Metallic Micro-Heat Pipe Based on High-Aspect-Ratio Microcahnnels” Heat Transfer Engineering, Vol. 28, pp. 772-778, 2007.
【14】R. Kempers, D. Ewing, C.Y. Ching, “Effect of Number of Mesh Layers and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipe” Applied Thermal Engineering, Vol. 26, pp. 589-595, 2005.
【15】李偉嵐,“平板形微熱管之製造與分析”,國立台北科技大學機電整合研究所碩士論文,2001。
【16】Y. Xuan, Y. Hong, Q. Li, “Investigation on transient behaviors of flat plate heat pipes” Experimental Thermal and Fluid Science, Vol.28, pp. 249-255, 2004.
【17】Y. Wang, K. Vafai, “An Experimental Investigation of the Thermal Performance of an Asymmetrical Flat Plate Heat Pipe” International Journal Heat and Mass Transfer, Vol. 43, pp. 2657-2668, 2000.
【18】陳盈舟,”平板式熱管之製造與熱性能測試”,逢甲大學航空工程學研究所碩士論文,2004。
【19】L. Lin, R. Ponnappan, J. Leland, “High Performance Miniature Heat Pipe” International Journal of Heat and Mass Transfer, pp3131-3142, Vol. 45, 2002.
【20】S. W. Kang, S. H. Tsai, M. H. Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication” Applied Thermal Engineering, Vol. 24, pp. 299-309, 2004.
【21】陳柏源,“銅散熱元件之MIM 製程及散熱性質研究”,國立台灣大學材料科學與工程研究所碩士論文, 2005。
【22】S. H. Moon, G. Hwang, S. C. Ko, Y. T. Kim, “Experimental Study On the Thermal Performance of Micro-Heat Pipe With Cross-Section of Polygon” Microelectronics Reliability, Vol. 44, pp315-321, 2004.
【23】鄭國章,“具高緻密度毛細結構之迴路式熱管”,國立台灣大學機械工程研究所碩士論文, 2003。
【24】潘宏凱,”蒸汽腔體之熱傳實驗與分析”,國立台灣海洋大學機械與機電工程學系碩士論文,2005。
【25】X. Wei, K. Sikka, “Modeling of Vapor Chamber as Heat Spreading Device” Thermomechanical Phenomena in Electronic Systems-Proceeding of the intersociety Conference, pp. 578-585, 2006.
【26】Y. Cao, A. Faghri, “Analyses of Transient and Steady-State Performances of Nosecap and Wing Leading Edge Heat Pipes” American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, Heat Pipes and Thermosyphons, Vol. 221, p 43-52, 1992.
【27】S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiment” Mech. Eng., ASME(January), 1953.