| 研究生: |
韋匕升 Wei, Bi-Sheng |
|---|---|
| 論文名稱: |
內置螺旋翼柱鰭陣列管道紊流場及熱傳數值與實驗研究 An experimental and numerical study of turbulent flow and heat transfer for the channel with an array of spiral-wing pin-fins |
| 指導教授: |
張始偉
Chang, Shyy-Woei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 螺旋翅翼 、柱鰭陣列 、空氣傳熱性能增益 |
| 外文關鍵詞: | Spiral-Wing, Pin Fin Array, Heat Transfer Enhancement |
| 相關次數: | 點閱:122 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一附帶螺旋翅翼之創新柱鰭陣列作為新型管道被動式傳熱增益裝置。藉由商業編譯軟體模擬通道雷諾數5500、7500、10000、15000和20000情況時紊流流場結構。基於實驗量測相同狀態下詳盡端壁紐塞數分佈與通道摩擦係數,以進行空氣傳熱特性與流場結構交互分析,探討傳熱主導機制和相關流場現象。流體穿越管道柱鰭列兩相臨柱鰭間時,受圓柱鰭上成對螺旋翅翼引導,產生各式渦旋和循環流進而強化傳熱、促進管核與管壁間流體混合。隨著雷諾數由5500增加至20000過程,端壁平均紐塞數與平滑圓管紐塞數參考值之比值由5.4下降至5.03;相對應范寧摩擦係數與平滑圓管范寧摩擦係數參考值之比值則由107.6上升至114.93。相較各式幾何形狀柱鰭陣列通道之管流,螺旋翅翼柱鰭陣列通過顯著地壓力損失實現更高傳熱性能增益。透過定泵功率以及定流量條件分析體現本柱鰭陣列傳熱效率。最終,針對通道端壁平均紐塞數與范寧摩擦係數實驗數據生成相關經驗公式,以利評估螺旋翅翼陣列通道執行與實際運用。
The current study proposes an innovative spiral-wing pin fin array as a new type of passive heat transfer enhancement (HTE) means. The aerothermal performances of the channel with the spiral-wing pin fin array are experimentally and numerically studied at the Reynolds numbers between 5500 and 20,000. The numerical simulation is carried out using the commercial software ANSYS-Fluent. The heat transfer characteristics and flow structures are interactively analyzed to determine the dominant flow physics relevant to the heat transfer performance. When the coolant flows through two adjacent pin-fins in a pin-row, it is tripped by the spiral wings attached on a cylindrical pin to generate various vortical flows to raise the endwall heat transfer rate by promoting the core-to-wall fluid mixings. When Reynolds number is increased from 5500 to 20,000, the ratio of endwall average Nusselt number to the plain tube reference is increased to 5.4-5.03. But the Fanning friction factors are raised to 107.6-114.93 times of the plain tube levels. The thermal performance factors evaluated at constant pumping powers in the range of 1.14-1.04 demonstrate the favorable aerothermal performance of the present HTE method. To assist the relevant applications, the empirical correlations evaluating the endwall average Nusselt number and Fanning friction factor of the present pin-fin channel are generated based.
[1] A. A. Zukauskas, Heat transfer from tubes in cross flow, Advances in Heat Transfer 8 (1972) 116-133.
[2] R. L. Webb, Air-side heat transfer in finned tube heat exchangers, Heat Transfer Engineering 1 (1980) 33-49.
[3] E. M. Sparrow, J. W. Ramsey, C. A. C. Altemani, Experiments on in-line pin fin arrays-and performance comparisons with staggered arrays, Transactions of the ASME Journal of Heat Transfer 102 (1980) 44-50.
[4] D. E. Metzger, B. A. Berry, J. P. Bronson, Developing heat transfer in rectangular ducts with staggered arrays of short pin fins, Transactions of the ASME Journal of Heat Transfer 104 (1982) 700-706.
[5] G. J. VanFossen, Heat transfer coefficients for staggered arrays of short pin fins, Transactions of the ASME Journal of Engineering for Power 104 (9182) 268-274.
[6] M. Tahat, Z. H. Kodah, B. A. Jarrah, S. D. Probert, Heat transfers from pin-fin arrays experiencing forced convection, Applied Energy 67 (2000) 419-442.
[7] K. Bilen, U. Akyol, S. Yapici, Heat transfer and friction correlations and thermal performance analysis for a finned surface, Energy Conversion and Management 42 (2001) 1071-1083.
[8] M. Axtmann, R. Poser, J. Wolfersdorf, M. Bouchez, Endwall heat transfer and pressure loss measurements in staggered arrays of adiabatic pin fins, Applied Thermal Engineering 103 (2016) 1048-1056.
[9] D. E. Metzger, C. S. Fan, S. W. Haley, Effects of pin shape and array orientation on heat transfer and pressure loss in pin fin arrays, Transactions of the ASME Journal of Engineering for Gas Turbines and Power 106 (1984) 252-257.
[10] E. M. Sparrow and V. B. Grannis, Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins, Int. Journal Heat Mass Transfer 34 (1991) 589-600.
[11] R. J. Goldstein, M. Y. Jabbari, S. B. Chen, Convective mass transfer and pressure loss characteristics of staggered short pin-fin arrays, Int. Journal Heat Mass Transfer 37 (1994) 149-160.
[12] Q. Li, Z. Chen, U. Flechtner, H.-J. Warnecke, Heat transfer and pressure drop characteristics in rectangular channels with elliptic pin fins, International Journal of Heat and Fluid Flow 19 (1998) 245-250.
[13] O. Uzol, and C. Camci, Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin-fin arrays, Transactions of the ASME Journal of Heat Transfer 127 (2005) 458-471.
[14] T.-M. Jeng, and S.-C. Tzeng, Pressure drop and heat transfer of square pin-fin arrays in in-line and staggered arrangements, Int. Journal Heat and Mass Transfer 50 (2007) 2364-2375.
[15] M. K. Chyu, C. H. Yen and S. Siw, Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements, GT2007-28306, 991-999, ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada May 14-17, 2007.
[16] M. Nuntakulamarat, C.-C. Shiau, J.-C. Han, Heat transfer and pressure drop measurements in a high aspect ratio channel with circular pins and strip fins, Transactions of the ASME Journal of Thermal Science and Engineering Applications 12 (2020) 031019 1-10.
[17] K. A. Moores and Y. K. Joshi, Effect of tip clearance on the thermal and hydrodynamic performance of a shrouded pin-fin array, Transactions of the ASME Journal of Heat Transfer 125 (2003) 999-1006.
[18] S.W. Chang, T.L. Yang, C.C. Huang, K.F. Chiang, Endwall heat transfer and pressure drop in rectangular channels with attached and detached circular pin-fin array, Int. Journal of Heat and Mass Transfer 51 (2008) 5247-5259.
[19] S. C. Siw, M. K. Chyu, T. I.-P. Shih, M. A. Alvin, Effects of pin detached space on heat transfer and pin-fin arrays, Transactions of the ASME Journal of Heat Transfer 134 (2012) 081902 1-9.
[20] O. N. Sara, Performance analysis of rectangular ducts with staggered square pin fins, Energy Conversion and Management 44 (2003) 1787-1803.
[21] P. Narato, M. Wae-hayee, M. Z. Abdullah, C. Nuntadusit, Effect of pin inclination angle on flow and heat transfer characteristics for a row of pins in a flow channel, International Communications in Heat and Mass Transfer 110 (2020) 104396 1-15.
[22] J. Armstrong and D. Winstanley, A review of staggered array pin fin heat transfer for turbine cooling applications, Transactions of the ASME Journal of Turbomachinery 110 (1988) 94-103.
[23] S. C. Lau, J. C. Han, T. Batten, Heat transfer, pressure drop, and mass flow rate in pin fin channels with long and short trailing edge ejection holes, Transactions of the ASME Journal of Turbomachinery 111 (1989) 116-123.
[24] M.K. Chyu, Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet, Transactions of the ASME Journal of Heat Transfer 112 (1990) 926-932.
[25] M.K. Chyu , Y. C. Hsing , T. I.-P. Shih , V. Natarajan, Heat transfer contributions of pins and endwall in pin-fin arrays: effects of thermal boundary condition modeling, ASME Journal of Turbomachinery 121 (1999) 257-263.
[26] P. M. Ligrani, M. M. Oliveira T. Blaskovich, Comparison of heat transfer augmentation techniques
AIAA Journal 41 (2003) 337-362.
[27] L. Tarchi, B. Facchini, S. Zecchi, Experimental investigation of innovative internal trailing edge cooling configurations with pentagonal arrangement and elliptic pin fin, International Journal of Rotating Machinery 2008 (2008) 109120 1-10.
[28] S. Y. Won, G. I. Mahmood, P. M. Ligrani, Spatially-resolved heat transfer and flow structurein a rectangular channel with pin fins, Int. Journal of Heat and Mass Transfer 47 (2004) 1731-1743.
[29] S. A. Lawson, A. A. Thrift, K. A. Thole, A. Kohli, Heat transfer from multiple row arrays of low aspect ratio pin fins, Int. Journal Heat and Mass Transfer 54 (2011) 4099-4109.
[30] M. K. Chyu, Y. C. Hsing, V. Natarajan, Convective heat transfer of cubic fin arrays in a narrow channel, Transactions of the ASME Journal of Turbomachinery 120 (1998) 362-367.
[31] A. Nuntaphan, T. Kiatsiriroat, C. C. Wang, Air side performance at low Reynolds number of cross-flow heat exchanger using crimped spiral fins, Int. Communications in Heat and Mass Transfer 32 (2005) 151-165.
[32] S. Tiwari, D. Chakraborty, G. Biswas, P. K. Panigrahi, Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter, Int. Journal Heat and Mass Transfer 48 (2005) 439-453.
[33] Y. Rao, Y. Xu, C. Wan, An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays, Experimental Thermal and Fluid Science 38 (2012) 237-247.
[34] Y. Rao, C. Wan, Y. Xu, An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths, Int. Journal Heat and Mass Transfer 55 (2012) 6723-6733.
[35] W. Du, L. Luo, S. Wang, X. Zhang, Heat transfer characteristics in a pin finned channel with different dimple locations, Heat Transfer Engineering 41 (2020) 1232-1251.
[36] G. Xie, Y. Song, T. W. Simon, Turbulent flow characteristics and heat transfer enhancement in a rectangular channel with elliptical cylinders and protrusions of various heights, Numerical Heat Transfer, Part A: Applications 72 (2017) 417-432.
[37] S. Caliskan, A. Dogan, I. Kotcioglu, Experimental investigation of heat transfer from different pin fin in a rectangular channel, Experimental Heat Transfer 32 (2019) 376-392.
[38] W. Bai, D. Liang, W. Chena, M. K. Chyu, Investigation of ribs disturbed entrance effect of heat transfer and pressure drop in pin-fin array, Applied Thermal Engineering 162 (2019) 114214 1-8.
[39] S. W. Chang, M.-F. Hsieh, W.-L. Cai, H.-D. Shen, Detailed heat transfer measurements of impinging swirling and non-swirling jet arrays emitted from grooved orifice plate, Chemical Engineering & Processing: Process Intensification 149 (2020) 107820, 1-16.
[40] S. W. Chang, P.-S. Wu, W. L. Cai, C.-H.. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, Int. Journal Heat and Mass Transfer 166 (2021) 120809 1-21,
[41] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, Int. Journal Heat Mass Transfer 23 (1980) 1127-1136.
[42] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mechanical Engineering 75 (1953) 3-8.
[43] Fluent Inc. FLUENT 19.2 Ansys Help – Fluent Theory Guide (2019).
[44] J. K. Ostanek and K. A. Thole, Wake development in staggered short cylinder arrays within a channel, Exp. Fluids 53 (2012) 673–697.
[45] J. K. Ostanek and K. A. Thole, Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders confined in a channel, Exp. Fluids 53 (2012) 1779–1796.