| 研究生: |
陳品璁 Chen, Pin-Tsung |
|---|---|
| 論文名稱: |
使用熱電晶片進行溫度控制和除溼應用於低成本的家用環境控制農業 Temperature control and humidity removal using a Peltier chip for low cost domestic controlled environment agriculture |
| 指導教授: |
吳馬丁
Torbjörn Nordling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 熱電晶片 、溫度及濕度控制 、環境控制農業 、旋轉設計 、暖通空調 |
| 外文關鍵詞: | Peltier chip, Temperature and humidity control, Controlled environment agriculture, Rotational design, HVAC |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景: 預計到2050 年,全球人口將超過90 億。人類對食物的需求,尤其是優質食物,也由於飲食的變化而增長。但是,由於城市擴張和過度開發,用於農作物的耕地面積減少了。砍伐森林以創造更多耕地與全球應對氣候變化的需求沒辦法兼容。食品的長途運輸會導致可觀的能源消耗和污染,同時還會降低食品的質量。環境控制農業(CEA)是解決方案之一,因為它可以減少水,肥料和農藥的使用,從而實現垂直農業。CEA 的規模可大可小,能在城市中進行大規模生產,或是在家中進行小量種植。物聯網(IoT)技術包含傳感器與致動器的使用可以將食品生產的數據化,藉由網路來傳輸食品其中不但能減少浪費且可以提高品量。但我們發現,大部分家用環境控制農業的原型都沒有完整的溫度及濕度控制或是使用昂貴的控制方法。
研究目標: 我們的目標在設計,建造和測試適用於家用CEA 的新設備,他能用於冷卻,加熱,除濕和通風。
研究方法: 我們使用致冷晶片作為執行器。它可以同時冷卻和加熱,因此通過在其周圍設計可變的氣流通道,我們既可以控制溫度又可以去除濕度。我們使用三種不同尺寸的保麗龍箱來量化設備的性能。
研究結果: 我們證明了我們的設備可以根據需要在受控環境裡實現冷卻,加熱,除濕和通風。我們的設備可實現在最小的盒子尺寸(0.0525 m3),相對於周圍環境的7°C 冷卻,28.8°C 加熱和3.47g / kg 的除濕量。對於最大尺寸的盒子(0.1575 m3),我們的設備可以實現4.3°C 的冷卻,18.7°C 的加熱和3.6g / kg 的除濕。從極端條件通風到室溫需要10 到20 分鐘。溫度可以控制在 2°C 之內。
研究結論: 我們的設備是家用CEA 可行的低成本選擇,因為致冷片的價格很便宜。缺點是冷卻太弱,沒辦法在各種室外環境下達到想要的冷卻量,因此性能仍有改進的空間。
Background:
The global population is predicted to exceed 9 billion by 2050.
Human demand for food, in particular, quality food is growing also due to changes in diet.
However, the area of agricultural land for crops has been reduced because of urban expansion and over exploitation.
Clearing of forest to create more arable land is not compatible with the global need to fight climate change.
Long-distance transportation of food cause considerable energy consumption and pollution while degrading the quality of the food.
Controlled environment agriculture (CEA) is one of the solutions, since it enable vertical farming with heavily reduced water, fertilizer, and pesticide usage.
CEA enable local production at scale in cities and small scale domestic production in the home.
The use of Internet of Things (IoT) technology with sensors and actuators enables digitalisation of food production where transmission of data can reduce waste and improve the quality.
However, we found that existing domestic controlled environment agriculture prototypes do not have complete temperature and humidity control or expensive control solutions.
Aim:
We aim to design, build, and test a new device for cooling, heating, dehumidification, and ventilation suitable for domestic CEA.
Method:
We used a Peltier chip as our actuator.
It can cool and heat at the same time, so by designing changeable airflow channels around it we can both control the temperature and remove humidity.
We quantified the performance of our device using three different sizes of closed styrofoam boxes.
Results:
We demonstrated that our device can implement cooling, heating, dehumidification, and ventilation as needed to achieve a controlled environment suitable for farming when the surrounding environment is at roughly 25°C and 55\% relative humidity.
Our device can achieve 7°C of cooling, 29°C of heating, and a 3.5g/kg dehumidification relative to the surrounding environment for the smallest box (0.05 $m^3$).
Our device can achieve 4°C of cooling, 19°C of heating, and a 3.6g/kg dehumidification relative to the surrounding room for the largest box (0.16 $m^3$) .
It took 10 to 20 minutes to ventilate to room condition from the extreme conditions.
Temperature can be controlled within $pm$2°C.
Conclusion:
Our device is a viable low cost option for domestic CEA, because the Peltier chip is cheap.
The cooling is too weak to simulate every climates in the world, so room for improvement in performance still exists.
Abdullah, A., Al Enazi, S., and Damaj, I. (2016). Agrisys: A smart and ubiquitous controlledenvironment
agriculture system. In 2016 3rd MEC International Conference on Big Data
and Smart City (ICBDSC), pages 1–6. IEEE.
Akinlade, R. J., Balogun, O. L., and Obisesan, A. A. (2013). Commercialization of urban
farming: The case of vegetable farmers in southwest nigeria. (309-2016-5243):15.
Al-Kodmany, K. (2018). The Vertical Farm: A Review of Developments and Implications
for the Vertical City. Buildings, 8(2):24.
Amado, T. M., Valenzuela, I. C., and Orillo, J. W. F. (2016). Horticulture of lettuce (lactuvasativa
l.) using red and blue led with pulse lighting treatment and temperature control in
snap hydroponics setup. Jurnal Teknologi, 78(5-9).
Amour, C. B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K.-H., Haberl, H.,
Creutzig, F., and Seto, K. C. (2017). Future urban land expansion and implications for
global croplands. Proceedings of the National Academy of Sciences, 114(34):8939–8944.
Ashton, K. et al. (2009). That ‘internet of things’thing. RFID journal, 22(7):97–114.
Bailey, G. E. (1915). Vertical farming.
Besthorn, F. H. (2013). Vertical Farming: Social Work and Sustainable Urban Agriculture in
an Age of Global Food Crises. Australian Social Work, 66(2):187–203.
Bongiovanni, R. and Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability.
Precision agriculture, 5(4):359–387.
Bruinsma, J. et al. (2009). The resource outlook to 2050: by how much do land, water and
crop yields need to increase by 2050. In Expert meeting on how to feed the world in,
volume 2050, pages 24–26.
Buehler, D. and Junge, R. (2016). Global trends and current status of commercial urban
rooftop farming. Sustainability (Switzerland), 8(11):1–16.
Castelló Ferrer, E., Rye, J., Brander, G., Savas, T., Chambers, D., England, H., and Harper,
C. (2019). Personal food computer: A new device for controlled-environment agriculture.
Advances in Intelligent Systems and Computing, 881:1077–1096.
Changmai, T., Gertphol, S., and Chulak, P. (2018). Smart Hydroponic Lettuce Farm using
Internet of Things. 2018 10th International Conference on Knowledge and Smart Technology:
Cybernetics in the Next Decades, KST 2018, pages 231–236.
73
DESA, U. (2019). World population prospects 2019: Highlights. New York (US): United
Nations Department for Economic and Social Affairs.
Despommier, D. (2009). The rise of vertical farms. Scientific American, 301(5):80–87.
Despommier, D. (2010). The vertical farm: feeding the world in the 21st century. Macmillan.
Despommier, D. (2013). Farming up the city: the rise of urban vertical farms. Trends in
Biotechnology, 31(7):388–389.
Gericke, W. F. et al. (1940). The complete guide to soilless gardening. The complete guide
to soilless gardening.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty,
J., Robinson, S., Thomas, S. M., and Toulmin, C. (2010). Food security: the challenge of
feeding 9 billion people. science, 327(5967):812–818.
Gonzalez-Amarillo, C. A., Corrales-Munoz, J. C., Mendoza-Moreno, M. A., Gonzalez Amarillo,
A. M., Hussein, A. F., Arunkumar, N., and Ramirez-Gonzalez, G. (2018). An IoTBased
traceability system for greenhouse seedling crops. IEEE Access, 6:67528–67535.
Hadabas, J., Hovari, M., Vass, I., and Kertész, A. (2019). Iolt smart pot: An iot-cloud solution
for monitoring plant growth in greenhouses.
Harper, C. and Siller, M. (2015). Openag: a globally distributed network of food computing.
IEEE Pervasive Computing, 14(4):24–27.
Jaggard, K. W., Qi, A., and Ober, E. S. (2010). Possible changes to arable crop yields by
2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554):
2835–2851.
Kavitha, A., Somashekar, R., and Nagaraja, B. (2015). Urban expansion and loss of agriculture
land-a case of bengaluru city. International Journal of Geomatics and Geosciences,
5(3):492–498.
Khummanee, S., Wiangsamut, S., Sorntepa, P., and Jaiboon, C. (2018). Automated Smart
Farming for Orchids with the Internet of Things and Fuzzy Logic. Proceeding of 2018 3rd
International Conference on Information Technology, InCIT 2018, pages 1–6.
Kodali, R. K., Jain, V., and Karagwal, S. (2017). IoT based smart greenhouse. IEEE Region
10 Humanitarian Technology Conference 2016, R10-HTC 2016 - Proceedings, pages 1–6.
Lasisi, M., Popoola, A., Adediji, A., Adedeji, O., and Babalola, K. (2017). City expansion
and agricultural land loss within the peri-urban area of osun state, nigeria. Ghana Journal
of Geography, 9(3):132–163.
Marcelino, R., Casagrande, L. C., Cunha, R., Crotti, Y., and Gruber, V. (2018). Internet of
things applied to precision agriculture. In Online Engineering & Internet of Things, pages
499–509. Springer.
Nnadi, S. N. and Idachaba, F. E. (2018). Design and implementation of a sustainable iot
enabled greenhouse prototype. In 2018 IEEE 5G World Forum (5GWF), pages 457–461.
IEEE.
Prathibha, S., Hongal, A., and Jyothi, M. (2017). Iot based monitoring system in smart
agriculture. In 2017 International Conference on Recent Advances in Electronics and
Communication Technology (ICRAECT), pages 81–84. IEEE.
R Shamshiri, R., Kalantari, F., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Ahmad,
D., and Shad, Z. M. (2018). Advances in greenhouse automation and controlled
environment agriculture: A transition to plant factories and urban agriculture.
Rabbi, B., Chen, Z.-H., and Sethuvenkatraman, S. (2019). Protected cropping in warm climates:
A review of humidity control and cooling methods. Energies, 12(14):2737.
Rassia, S. T. and Pardalos, P. M. (2012). Sustainable Environmental Design in Architecture
Imapcts on Health. Springer, pages 1–333.
Ray, P. P. (2017). Internet of things for smart agriculture: Technologies, practices and future
direction. Journal of Ambient Intelligence and Smart Environments, 9(4):395–420.
Shi, K., Chen, Y., Yu, B., Xu, T., Li, L., Huang, C., Liu, R., Chen, Z., and Wu, J. (2016). Urban
expansion and agricultural land loss in china: A multiscale perspective. Sustainability,
8(8):790.
Specht, K., Siebert, R., Hartmann, I., Freisinger, U. B., Sawicka, M., Werner, A., Thomaier,
S., Henckel, D., Walk, H., and Dierich, A. (2014). Urban agriculture of the future: An
overview of sustainability aspects of food production in and on buildings. Agriculture and
Human Values, 31(1):33–51.
Stevens, J. D. and Shaikh, T. (2018). MicroCEA: Developing a Personal Urban Smart Farming
Device. 2nd International Conference on Smart Grid and Smart Cities, ICSGSC 2018,
pages 49–56.
Suma, N., Samson, S. R., Saranya, S., Shanmugapriya, G., and Subhashri, R. (2017). Iot
based smart agriculture monitoring system. International Journal on Recent and Innovation
Trends in computing and communication, 5(2):177–181.
Swinton, S. M. and Lowenberg-Deboer, J. (2001). Global adoption of precision agriculture
technologies: Who, when and why. In Proceedings of the 3rd European Conference on
Precision Agriculture, pages 557–562. Citeseer.
Sylvester-Bradley, R. and Wiseman, J. (2005). Yields of farmed species: constraints and
opportunities in the 21st century. eds. Number 338.1622 SYL. CIMMYT.
Thomaier, S., Specht, K., Henckel, D., Dierich, A., Siebert, R., Freisinger, U. B., and Sawicka,
M. (2015). Farming in and on urban buildings: Present practice and specific novelties
of zero-acreage farming (ZFarming). Renewable Agriculture and Food Systems, 30(1):43–
54.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L. (2011). Global food demand and the sustainable
intensification of agriculture. Proceedings of the National Academy of Sciences,
108(50):20260–20264.
Vernandhes, W., Salahuddin, N. S., Kowanda, A., and Sari, S. P. (2018). Smart aquaponic
with monitoring and control system based on IoT. Proceedings of the 2nd International
Conference on Informatics and Computing, ICIC 2017, 2018-Janua:1–6.