| 研究生: |
郭原呈 Kuo, Yuan-Cheng |
|---|---|
| 論文名稱: |
MgZn(Nb1-xTax)4O12陶瓷在微波頻段之研究與應用 Study and Applications of MgZn(Nb1-xTax)4O12 Ceramics at Microwave Frequency |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 陶瓷 、微波頻段 、環形雙模態濾波器 、MgZnNb4O12 、MgZnTa4O12 |
| 外文關鍵詞: | Microwave dielectric properties, High-Q microwave dielectric ceramics, MgZnNb4O12, MgZ nTa4O12, filter, Ceramics, Microwave Frequency |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗(Q>5,000)的介電材料,並探討其不同比例下之微波介電特性;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
第一部份首先要介紹MgZnNb4O12、MgZnTa4O12陶瓷系統之微波介電特性。並使用與Nb5+相同離子半徑的Ta5+來取代Nb5+位置,形成MgZn(Nb1-xTax)4O12 (x = 0–1)固溶體,研究其材料特性及微波介電性質。由實驗中可得知MgZn(Nb0.2Ta0.8)4O12在1390°C燒結4小時可得到最佳之介電特性 ~ 35.1,Q׃~ 56,000 GHz (at 8.15 GHz),τf ~ –4.6 ppm/°C。
第二部份我們設計及實作一操作在2.45 GHz的微帶線帶通濾波器,濾波器主要採用一環形雙模態濾波器做為主體,其雙模態能在通帶兩側產生傳輸零點,並在饋入端加入一Open-stub來抑制倍頻寄生響應。最後,我們將此電路實作在FR4、氧化鋁和MgZn(Nb0.2Ta0.8)4O12基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
There are two main subjects in this thesis. First, we will introduce the low loss dielectric material (Q>5,000), and try to discuss the microwave dielectric properties with different ratio. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, the microwave dielectric properties of MgZnNb4O12、MgZnTa4O12 ceramic system have been investigated. Then use the same ionic radius of Ta5+ substitute Nb5+ from the MgZn(Nb1-xTax)4O12 (x = 0–1) solid solutions. The experiment results show that MgZn(Nb0.2Ta0.8)4O12 ceramics has the best properties at sintering temperature 1390°C for 4 hours, which could reach the best dielectric properties ~ 35.1, Q×f ~ 56,000 (at 8.15 GHz) and τf ~ –4.6 ppm/°C.
Second, we design and fabricate a microstrip band-pass filter which resonator at 2.45 GHz. The filter was constructed by dual-mode microstrip rectangular ring bandpass filter. The transmission zeros on both sides of passband were designed by dual-mode. Finally, an open-stub was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and MgZn(Nb0.2Ta0.8)4O12 substrates. The frequency response of measurement results, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.
[1] H. M. O’bryan, J. Thomson, and J. K. Plourde, “A new BaO–TiO2 compound with temperature- stable high permittivity and low microwave loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2] G. Wolfram and H. E. Göbel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z = 2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values,” Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
[4] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
[5] C. L. Huang, T. J. Yang, and C. C. Huang, “Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as aτf compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[7] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[8] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13, 152–161 (1983).
[9] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[10] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[11] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[12] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉出版社, (1988).
[13] H. J. Lee, I. T. Kim, and K. S. Hong, ‘‘Dielectric properties of AB2O6 compounds at microwave frequencies (A = Ca, Mg, Mn, Co, Ni, Zn, and B = Nb,Ta),’’ Jpn. J. Appl. Phys., 36 [10A] L1318–20 (1997).
[14] Y. C. Zhang, Z. X. Yue, Z. L. Gui, L. T. Li, and C. M. Cheng , “Microwave dielectric properties of (Zn1-xMgx)Nb2O6 ceramics,” Mater. Lett., 57 4531–4534 (2003).
[15] C. L. Huang, J. Y. Chen, Y. W. Tseng, C. Y. Jiang, and G. S. Huang, “High dielectric constant and low-loss microwave dielectric ceramics using (Zn0.95M0.05)Ta2O6 (M = Mn,Mg, and Ni) solid solutions,” J. Am. Ceram. Soc., 93 [10] 3299–3304 (2010).
[16] C. L. Huang, J. Y. Chen, “Microwave dielectric characteristics of (Mg0.95M0.05)Ta2O6 (M = Ni, Zn, Mn) ceramic series,” Mater. Lett., 76 28–31 (2012).
[17] Y. C. Zhang, Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, “Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics,” Mater. Lett., 58 1392–1395 (2004).
[18] W. C. Tzou , Y. C. Chen , C. F. Yang , C. M. Cheng , “Microwave dielectric characteristics of Mg(Ta1-xNbx)2O6 ceramics,” Mater. Res. Bull., 41 1357–1363 (2006).
[19] G. R. Lumpkin, K. L. Smith, and M. G. Blackford, “Heavy ion irrasiation studies of columcite, brannerite, and pyrochlore structure types,” J. Nucl. Mater., 289 177–187 (2001).
[20] C. Tealdi, M. S. Islam, L. Malavasi, and G. Flor, “Defect and dopant properties of MgTa2O6,” J. Solid State Chem., 177 4359–4367 (2004).
[21] R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI design techniques for analog and digital circuits,” McGraw-Hill, (1990).
[22] R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in microstrip,” 16 [6] 342–350 (1968).
[23] J. S. Hong, M. J. Lancaster, “Microwave filters for RF/microwave applications,” John Wiley & Sons, (2001).
[24] G. Kompa, “Practical microstrip design and applications,” Artech House, (2005).
[25] K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip lines and slotlines,” Second Edition, Artech House, (1996).
[26] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures,” Artech House, (1980).
[27] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[28] H. Cha: IEEE. Trans. MTT, vol.MTT-33, pp.519, 1985.
[29] A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric,” IEEE Trans. Microwave Theory Tech., 54 [3] 1253–1261 (2006).
[30] H. A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet,” IEEE Trans. Microwave Theory Tech., 13 172–185 (1965).
[31] H. A. Wheeler, “Tramsmission line properties of a strip on a dielectric sheet on a plane,” IEEE Trans., MTT-25 631–647 (1977).
[32] I. Wolff, “Microstrip bandpass filters using degenerate modes of microstrip ring resonator,” Electron. Lett., 8 [12] 163–164 (1972).
[33] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[34] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[35] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[36] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[37] R. J. Cava, W. F. Peck, J. J. Krajewski, G. L. Roberts, B. P. Barber , H. M. O’ Bryan, and P. L. Gammel, “Improvement of the dielecctric properties of Ta2O5 through substitution with Al2O3,” Appl. Phys. Lett. 70 [11] 1396–1398 (1997).
校內:2017-07-23公開