研究生: |
李韋勳 Li, Wei-Hsun |
---|---|
論文名稱: |
運用分子模擬探討兩性含氟共聚高分子黏著劑對鋰離子電池中電解質/正極界面結構與離子動力學特性之影響 Exploring the Effects of Amphiphilic Fluorinated Copolymer on the Structures and Ion Dynamics at the Electrolyte-Cathode Interface of Lithium Ion Battery via Molecular Simulations |
指導教授: |
邱繼正
Chiu, Chi-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 分子動力學模擬 、鋰離子電池 、聚醚鏈段 、黏著劑 、擴散係數 |
外文關鍵詞: | Molecular Dynamics, lithium ion batteries, ethylene oxide, binder, diffusivity |
相關次數: | 點閱:93 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池中,電極之組成需要使用黏著劑以接合各組成成分。近期研究指出,於高分子黏著劑中引進聚醚高分子鏈段,可以利用其傳導鋰離子之特性,進而提升電池效能。本研究利用分子動力學模擬,從微觀的角度分析含有聚醚鏈段與含氟鏈段的兩性共聚高分子黏著劑在正極/電解質界面對鋰離子傳遞機制的影響。我們發現不同分子量、單體比例、與結構單元排列的高分子,會改變黏著劑表面的聚醚鏈段密度。而徑向分佈函數以及鋰離子周圍分子的配位數分析,顯示在靠近高分子黏著劑表面的聚醚鏈段會降低正負離子之間的作用力。在電解液區域,鋰離子周圍的配位原子以碳酸乙烯酯和碳酸二乙酯上的羰基氧為主;而在靠近黏著劑表面後會被聚醚鏈段所取代。在動力學特性上,我們發現被聚醚鏈段包覆的鋰離子會隨聚醚鏈段一起移動,但其擴散係數會低於在電解液的鋰離子。另一方面,由於聚醚鏈段結構的特性,鋰離子無法於此高分子黏著劑系統中進行聚醚鏈段內的躍遷,但是於聚醚鏈段之間的躍遷次數會隨著表面聚醚鏈段密度的增加而提升。然而,因聚醚鏈段和鋰離子的穩定配位結構,整體鋰離子的擴散係數是隨著表面聚醚鏈段密度增加而下降。結合結構與動力學之分析,於黏著劑高分子中添加聚醚鏈段,可減弱正負離子的作用力,提高鋰離子之自由度,但聚醚鏈段卻會降低整體的鋰離子擴散係數。此二種競爭效應,可說明實驗中在特定比例之聚醚鏈段與含氟鏈段具有最低阻抗的微觀機制。
A recently developed amphiphilic co-polymer binder poly(PEGMA-block-PFHEMA), which consists Li+ conducting ethylene oxide (EO) segments, has been shown to improve the lithium ion battery efficiency. In this work, we utilized molecular dynamics (MD) simulations to explore the effects of amphiphilic fluorinated copolymer composed of PEGMA and PFHEMA at the cathode/electrolytes interface. We found that varying the molecular weight, the ratio of PEGMA to PFHEMA, and the monomer block sizes of the co-polymer can alter the surface density of EO-segments. The radial distribution function and Li+ coordination analyses showed the interaction between Li+ and PF6- is reduced on the binder surface. The coordination around Li+ have gradually changed from EC and DEC solvent to polymer EO-segments as Li+ approaching the binder surface. Furthermore, the diffusivity of the bound Li+ are in the same order as the coordinated ether oxygens, illustrating the cooperative motion of the Li+ and EO-chains. In contrast, the intrachain Li+ conduction is absent in this binder system due to the short EO-segments; while the occurrence of interchain Li+ conduction increases with the EO-chain surface density. Yet, the overall diffusivity of the surface bound Li+ is reduced as the surface EO-chain density increases. The combined results conclude that the addition of the EO chains can reduce the interaction between Li+ and PF6- but decrease the overall Li+ diffusivity on the binder surface. The two competing effects provide microscopic insights into the experimental observation of the optimal ratio of PEGMA to PFHEMA.
Abraham, K. M. Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett, 6(5), 830-844, 2015.
Baboul, A. G., Redfern, P. C., Sutjianto, A., & Curtiss, L. A. Li+−(Diglyme)2 and LiClO4− Diglyme Complexes: Barriers to Lithium Ion Migration. Journal of the American Chemical Society, 121(31), 7220-7227, 1999.
Borodin, Oleg, and Grant D Smith. “Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations.” Macromolecules 39(4): 1620–29, 2006.
Ban, S., Huang, C., Yuan, X. Z., & Wang, H. Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes. The Journal of Physical Chemistry B, 115(39), 11352-11358, 2011.
Bieker, G., Winter, M., & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Physical Chemistry Chemical Physics, 17(14), 8670-8679, 2015.
C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc,133, 2132-2135, 2011.
Canongia Lopes, J. N., & Pádua, A. A. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. The Journal of Physical Chemistry B, 108(43), 16893-16898, 2004.
Chou, S. L., Pan, Y., Wang, J. Z., Liu, H. K., & Dou, S. X. Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 16(38), 20347-20359, 2014.
Chattoraj, J., Knappe, M., & Heuer, A. Dependence of ion dynamics on the polymer chain length in poly (ethylene oxide)-based polymer electrolytes. The Journal of Physical Chemistry B, 119(22), 6786-6791, 2015.
Casalegno, M., Castiglione, F., Passarello, M., Mele, A., Passerini, S., & Raos, G. Association and Diffusion of Li+ in Carboxymethylcellulose Solutions for Environmentally Friendly Li‐ion Batteries. ChemSusChem, 9(14), 1804-1813, 2016.
Dhameja, S., Electric Vehicle Battery Systems, Newnes, Oxford, 2001.
Doi, M., Edwards, S. Eds., The Theory of Polymer Dynamics; Oxford University Press, Oxford, 2003.
DiLallo, M., The Motley Fool, Alexandria Virginia, Jun, 28, 2014.
Gray, F.M., Solid polymer electrolytes: fundamentals and technological applications. Scotland, UK: VIH Publishers, Inc, 1991.
Guerfi, A., Kaneko, M., Petitclerc, M., Mori, M., & Zaghib, K. "LiFePO4 water-soluble binder electrode for Li-ion batteries." Journal of Power Sources, 163(2), 1047-1052, 2007.
Goodenough, J. B., & Park, K. S. "The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society", 135(4), 1167-1176, 2013.
Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., & Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421-443, 2014.
Giorgini, M. G., Futamatagawa, K., Torii, H., Musso, M., & Cerini, S. Solvation Structure around the Li+ Ion in Mixed Cyclic/Linear Carbonate Solutions Unveiled by the Raman Noncoincidence Effect. The Journal of Physical Chemistry Letters, 6(16), 3296-3302, 2015.
Ibrahim, S., Yassin, M. M., Ahmad, R., & Johan, M. R. Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics, 17(5), 399-405, 2011.
Isken, P., Dippel, C., Schmitz, R., Schmitz, R. W., Kunze, M., Passerini, S., ... & Lex-Balducci, A. High flash point electrolyte for use in lithium-ion batteries. Electrochimica Acta, 56(22), 7530-7535, 2011.
Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225-11236, 1996.
Johansson, P., Tegenfeldt, J., & Lindgren, J. Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta-and hexaglyme complexes. Polymer, 40(15), 4399-4406, 1999.
Kim, D. H., & Kim, J. "Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties." Electrochemical and Solid-State Letters, 9(9), A439-A442, 2006.
Kaskhedikar, N. A., & Maier, J. Lithium storage in carbon nanostructures. Advanced Materials, 21(25‐26), 2664-2680, 2009.
Kufian, M. Z., & Majid, S. R. Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v= 1/2) electrolyte with ethyl propionate additive. Ionics, 16(5), 409-416, 2010.
Li, J., Klöpsch, R., Nowak, S., Kunze, M., Winter, M., & Passerini, S. Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. Journal of Power Sources, 196(18), 7687-7691, 2011.
Liu, J. Addressing the grand challenges in energy storage. Advanced Functional Materials, 23(8), 924-928, 2013.
Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. "A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science", 7(12), 3857-3886, 2014.
Luo, W., Zhou, L., Fu, K., Yang, Z., Wan, J., Manno, M., & Hu, L. A thermally conductive separator for stable Li metal anodes. Nano letters, 15(9), 6149-6154, 2015.
Mitzushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull., 15, 783, 1980.
Mao, G., Saboungi, M. L., Price, D. L., Armand, M. B., & Howells, W. S. Structure of liquid PEO-LiTFSI electrolyte. Physical review letters, 84(24), 5536, 2000.
Maitra, A., & Heuer, A. Cation transport in polymer electrolytes: A microscopic approach. Physical review letters, 98(22), 227802, 2007.
Mogurampelly, S., Borodin, O., & Ganesan, V. Computer Simulations of Ion Transport in Polymer Electrolyte Membranes. Annual review of chemical and biomolecular engineering, 7, 349-371, 2016.
Mogurampelly, S., & Ganesan, V. Structure and mechanisms underlying ion transport in ternary polymer electrolytes containing ionic liquids. The Journal of Chemical Physics, 146(7), 074902, 2017.
Nagaura, T.; Tozawa, K. Prog. Batteries Sol. Cells, 9, 209, 1990.
Ong, M. T., Verners, O., Draeger, E. W., Van Duin, A. C., Lordi, V., & Pask, J. E. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. The Journal of Physical Chemistry B, 119(4), 1535-1545, 2015.
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19, 1995.
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S., & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 144(5), 1609-1613, 1997.
Porcher, W., Moreau, P., Lestriez, B., Jouanneau, S., Le Cras, F., & Guyomard, D. Stability of LiFePO4 in water and consequence on the Li battery behaviour. Ionics, 14(6), 583-587, 2008.
Quartarone, E., & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews, 40(5), 2525-2540, 2011.
Shinoda, W., Shimizu, M., & Okazaki, S. Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. The Journal of Physical Chemistry B, 102(34), 6647-6654, 1998.
Sambasivarao, S. V., & Acevedo, O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. Journal of chemical theory and computation, 5(4), 1038-1050, 2009.
Sun. C, Rajasekhara. S, Goodenough J.B, Zhou. F, J. Am. Chem. Soc,133, 2132-2135, 2011.
Savoie, B. M., Webb, M. A., & Miller, T. F. Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes. The Journal of Physical Chemistry Letters, 2017.
Tarascon, J. M., & Armand, M. "Issues and challenges facing rechargeable lithium batteries." Nature, 414(6861), 359-367, 2001.
Toprakci, O., Toprakci, H. A., Ji, L., & Zhang, X. "Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries." KONA Powder and Particle Journal, 28(0), 50-73, 2010.
Tasaki, K., Goldberg, A., & Winter, M. On the difference in cycling behaviors of lithium-ion battery cell between the ethylene carbonate-and propylene carbonate-based electrolytes. Electrochimica Acta, 56(28), 10424-10435, 2011.
Wu, "Synthesis of Amphiphilic Fluorinated Copolymer used as Water-Based Binder for Lithium-Ion Batteries" National Cheng Kung University, Department of Chemical Engineering, Master Thesis, 2016
Webb, M. A., Savoie, B. M., Wang, Z. G., & Miller III, T. F. Chemically specific dynamic bond percolation model for ion transport in polymer electrolytes. Macromolecules, 48(19), 7346-7358, 2015.
Webb, M. A., Jung, Y., Pesko, D. M., Savoie, B. M., Yamamoto, U., Coates, G. W., ... & Miller III, T. F. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS central science, 1(4), 198-205, 2015.
Xue, Z., He, D., & Xie, X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 3(38), 19218-19253, 2015.
Yoshio Waseda, The Structure of Non-crystalline Materials – Liquids and Amorphous Solids, McGraw-Hill, New York, pp. 48–51, 1980.
Young, W. S., Albert, J. N., Schantz, A. B., & Epps III, T. H. Mixed-salt effects on the ionic conductivity of lithium-doped PEO-containing block copolymers. Macromolecules, 44(20), 8116-8123, 2011.
Yuan, K., Bian, H., Shen, Y., Jiang, B., Li, J., Zhang, Y., ... & Zheng, J. Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements. The Journal of Physical Chemistry B, 118(13), 3689-3695, 2014.
Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., ... & Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164, 2016.
Zhang, S. S., Xu, K., & Jow, T. R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries. Journal of power sources, 138(1), 226-231, 2004.