| 研究生: |
李奕穎 Li, Yi-Ying |
|---|---|
| 論文名稱: |
金屬氧化物薄膜電晶體之研究 Investigation of Metal Oxide Thin Film Transistors |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 二氧化鈦 、金屬氧化薄膜電晶體 、超音波噴霧熱裂解沉積法 |
| 外文關鍵詞: | TiO2, thin film transistors, ultrasonic spray pyrolysis deposition |
| 相關次數: | 點閱:148 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討利用超音波霧化熱裂解法沉積二氧化鈦應用於薄膜電晶體,在眾多沉積二氧化鈦薄膜製程中,我們選擇一種非真空環境下即可完成且低成本之製作方法:超音波噴霧熱烈解沉積法,並將此製程應用於薄膜電晶體之通道材料上,沉積於氧化錫摻雜氟的透明導電薄膜在玻璃基板上,同時也利用超音波霧化熱裂解法沉積氧化鋁作為閘極介電層,製作成底閘極結構的透明薄膜電晶體。
為了瞭解二氧化鈦結晶方向、結晶種類、表面粗糙度、晶粒大小、化學組成、氧空缺、折射係數、薄膜厚度,在本研究中使用(一) X-射線繞射分析、(二) 顯微拉曼光譜儀、(三) 原子力顯微鏡、(四) 掃描式電子顯微鏡、(五) 化學分析影像能譜儀、(六) 光致螢光光譜、(七) 橢圓偏光儀、(八) 穿透式電子顯微鏡。
在瞭解薄膜之材料分析後,將超音波噴霧熱烈解沉積技術應用於底閘極結構的透明薄膜電晶體上成長二氧化鈦之主動層和氧化鋁之介電層,分別以200oC、300oC以及400oC退火溫度去改善二氧化鈦薄膜電晶體之電子遷移率、次臨界擺幅、臨界電壓、最大輸出電流以及元件開關比,以400 oC退火的表現最佳,這是由於在高溫下進行退火有助於修復二氧化鈦表面之缺陷;綜合材料分析和電性分析,可以發現400oC退火溫度為本論文中的最佳參數。同時,我們使用濺鍍法沉積氧化銦鎵鋅作為參考的樣品,去探討氧化銦鎵鋅在底閘極結構的基本電性與材料分析。
我們將金屬氧化薄膜電晶體照射波長為320nm到450nm的光,探討電晶體照射光後所產生的光電流,與未照光的暗電流,分析金屬氧化薄膜光電晶體的紫外光響應和感測度,使用超音波噴霧熱烈解沉積技術沉積的二氧化鈦的光響應度較濺鍍法沉積的沉積氧化銦鎵鋅的光響應度的特性上相對優秀,以爐管400oC退火30分鐘的光響應最佳,顯示二氧化鈦在銳鈦礦的晶相,有著良好的對光感測度。因此,不論是在於一般的薄膜電晶體還是光電體上,使用超音波噴霧熱烈解沉積技術沉積的二氧化鈦的金屬氧化薄膜電晶體都有著具競爭力的表現。本論文中,超音波噴霧熱烈解沉積技術沉積技術不僅可以降低生產成本而且可以沉積出高品質的二氧化鈦薄膜,在未來工業的使用極具潛力。
The research mainly investigates on the TiO2-based metal oxide thin film transistors (TFTs) by using ultrasonic spray pyrolysis technique. Among TiO2 thin film deposition methods, ultrasonic spray pyrolysis deposition (USPD) which is a non-vacuum and low cost approach is used to fabricate the titanium dioxide active layer. Furthermore, this technique is applied to bottom-gate thin film transistors, including TiO2-based and IGZO based active layer.
In order to understand crystal phase, crystal type, surface roughness, grain size, chemical composition, oxygen vacancy, refractive index and thin film thickness of the oxide layer, the (1) X-ray Diffraction (XRD), (2) Microscopes Raman spectrometer, (3) Atomic Force Microscopy (AFM), (4) Scanning Electron Microscope (SEM), (5) Electron Spectroscopy for Chemical Analysis (ESCA), (6) Photoluminescence Spectrometer (PL), (7) Ellipsometry, and (8) Transmission Electron Microscopy (TEM) are adopted in this research.
After the material analysis of the TiO2 film, the USPD technique is used to grow the TiO2 active layer of the metal oxide TFTs and Al2O3 layer for gate dielectric of IGZO-based TFTs. To study the characteristics of the different annealing temperatures in TiO2-based TFTs, we choose 200oC, 300oC and 400oC annealing for 30 minutes to fabricate the devices. From the I-V characteristics of the metal oxide TFTs, it was found that maximum output current (IDS) increases with annealing temperature increasing. Among these electrical analyses, the anatase TiO2 TFT is effectively improved.
We also investigate the spectral response of metal oxide TFTs. From the I-V characteristics of photo current and dark current, we analyze the responsivity, R320/450 and external quantum efficiency (EQE). It was found that the photo response of the TiO2 film deposited by ultrasonic spray pyrolysis technique had the better performances than IGZO film deposited by sputter. Therefore, the TiO2 film deposited by ultrasonic spray pyrolysis technique had competitive performance in thin film transistor and phototransistor.
In summary, the USPD technique makes good quality of titanium dioxide in a cost-effective way, it is very promising technique to be used in the future industry.
[1] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp.488-492, Nov. 2004.
[2] Kenji Nomura, Hiromichi Ohta, Kazushige Ueda, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1272, 23 May, 2003.
[3] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82,no.733, pp. 762-764, 2003.
[4] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater.., vol. 17, no. 5, pp.590-594, March 2005.
[5] Hisato Yabuta, Masafumi Sano, Katsumi Abe, Toshiaki Aiba, Tohru Den, Hideya Kumomi, Kenji Nomura, Toshio Kamiya, and Hideo Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, 2006.
[6] D. A. H. Hanaor, C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J Mater Sci., vol. 46, pp. 855–874, 2011.
[7] Chun-Guey Wu, Chia-Cheng Chao, and Fang-Ting Kuo, “Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification, ”Catal Today, vol.97 pp.103-112, Oct. 2004.
[8] W. S. Shih, S. J. Young, L. W. Ji, W. Water and H. W. Shiua, “TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer,” J ELECTROCHEM SOC, vol.158, no.6, pp.609-611,2011.
[9] P. H. Wöbkenberg, T. Ishwara, J. Nelson, D. D. C. Bradley, S. A. Haque, and T. D.Anthopoulos, “TiO2 thin-film transistors fabricated by spray pyrolysis,” Appl. Phys. Lett., vol. 96, 2010.
[10] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4, pp. 996-1000, 2011..
[11] P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Material., vol. 6, pp. 352–358, 2005.
[12] W. C. Ou, “Enhanced performances of GaN-based MOS-HEMTs by surface passivation and post oxide annealing,” Institute of Microelectronics, National Cheng-Kung University, pp. 1-103, 2013.
[13] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, pp. 996-1000, 2011.
[14] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sensors J., vol. 11, pp. 999-1003, 2011.
[15] M. L. Lee, Y. H. Yeh, and S. J. Tu, “Solar-blind p-i-n photodetectors formed on SiO2-patterned n-GaN templates,” IEEE J. Quantum Electron., vol. 48, pp. 1305-1309, 2012.
[16] H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis,” IEEE Photon. Technol. Lett., vol. 26, pp. 1243-1246, 2014.
[17] Center for micro/nano science and technology, NCKU.
[18] C.Y. Ho, Y.J. Chang, “Effects of various gate materials on electrical degradation of a-Si:H TFT in industrial display application” Solid-State Electronics, vol. 116, pp.130-134, Feb. 2016
[19] Z. D. Huang, R. W. Chuang, W. Y. Weng, S. J. Chang, C. J. Chiu, and S. L. Wu, “GaN Schottky barrier photodetectors with a β-Ga2O3 cap layer,” Appl. Phys. Express, vol. 5, pp. 116701-116701-3, 2012.
[20] S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen, S. L. Wu, and B. R. Huang, “GaN Schottky barrier photodetectors,” IEEE Sensors J., vol. 10, pp. 1609-1614, 2010.
[21] F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, and J. Zhou, “Ultra-low dark current AlGaN-based solar-blind metal–semiconductor–metal photodetectors for high-temperature applications,” IEEE Sensors J., vol. 12, pp. 2086-2090, 2012.
[22] C. G. Wu, C. C. Chao, and F. T. Kuo, “Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification,” Catalysis Today., vol.97, pp. 103–112, 2004.
[23] S.H. Hong, “TiO2-based Ultraviolet Photodetectors by Ultrasonic Spray Pyrolysis Technique,” Institute of Microelectronics, National Cheng-Kung University, pp.66, 2015.
[24] A. K. Okyay, F. B. Oruç, F. Çimena, and L. E. Aygüna, “TiO2 Thin Film Transistor by Atomic Layer Deposition,” Oxide-based Materials and Devices IV, vol.8626 8626161-1, 2013
[25] J.-W. Park, and S. h. Yoo, “New n-type TiO2 Transparent active channel
TFTs fabricated with a solution process,” IEEE Electron Device Lett., vol. 29, no.4, pp. 724-727, 2008.
[26] N. Tiwari, H. P. D. Shieh, and P.-T. Liu, “Structural optical and photoluminescence study of ZnO/IGZO thin film for thin film transistor application,” Mater Lett, vol. 151, pp. 53-56, July 2015.
[27] J.-K. Kim, S.-H. Jeong, S.-A. Oh, S.-J. Moon, K. Imura, T. Okada, T. Noguchi, E.-J. Yun, and B. S. Bae, “Electrical Characteristics of a-IGZO TFTs With SiO2 Gate Insulator Prepared by RF Sputtering,” J. Disp. Technol., vol. 12, no. 3, Mar. 2016.
[28] Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett., vol. 101, 2012.
[29] C. G. Theodorou, A.Tsormpatzoglou, C. A. Dimitriadis, S. A. Khan, M. K. Hatalis, J. Jomaah, and G. Ghibaudo, “Origin of low-frequency noise in the low drain
current range of bottom-gate amorphous IGZO thin-film transistors,” IEEE Electron Device Lett., vol. 32, no.7, pp. 898-900, 2011.
[30] J. Yu, S.W. Shin, K.-H. Lee, J.-S. Park, and S. J. Kang, “Visible-light phototransistors based on InGaZnO and silver nanoparticles,” J. Vac. Sci. Technol. B ,vol.33, 2015
[31] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric,” Appl. Phys. Lett., vol. 101, 2012.
[32] Z. Pei, H.-C. Lai, J.-Y. Wang, W.-H. Chiang, and C.-H. Chen, “High-responsivity and high-sensitivity Graphene Dots/a-IGZO thin-film phototransistor,” IEEE Electron Device Lett., vol.36, no.1,pp.44-46, Jan. 2015
[33] Kwok K. NG, “Complete guide to semiconductor devices 2nd edition,” Wiley-IEEE Press, pp.177-180, July 2002
[34] S.M. Sze, “Semiconductor devices physics and technology 2nd edition,” Wiley-IEEE Press, pp. 36, 2002
[35] C. Jin, B. Liu, Z. Lei and Jiaming Sun, “Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone,” Nanoscale Research Letters, Dec. 2015.