簡易檢索 / 詳目顯示

研究生: 謝鈞哲
Hsieh, Chun-Che
論文名稱: 配電級油浸式變壓器油中氣體之類神經網路分析
A study on Artificial Neural Network Analysis based on Dissolved Gas in Oil-Immersed Distribution Transformers
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 配電級油浸式變壓器油中氣體分析類神經網路
外文關鍵詞: Oil-Immersed Distribution Transformer, Dissolved Gas Analysis, Artificial Neural Network
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一配電級油浸式變壓器油中氣體分析診斷系統,利用類神經網路之技術,達到判斷配電級變壓器正、異常之效果,其中類神經網路採用三種網路架構個別比較,倒傳遞網路架構、徑向基網路架構及機率神經網路架構,依據975筆資料進行網路架構設計,並以試誤法測試出最佳模型,以20筆故障資料及5982筆歷史資料做為測試資料,觀察三種網路架構之判斷結果,並做比較,其中倒傳遞網路架構經過適當的設計可達最佳之判斷效果,其次為徑向基網路架構,最後為機率神經網路架構,最後針對其判斷結果皆可達到96%的準確度,證明配電級油浸式變壓器油中氣體分析診斷系統為可行且準確的。

    In this thesis, an oil-immersed distribution transformer dissolved gas analysis and diagnosis system are presented. The diagnosis adopts artificial neural network technique to evaluate the normality status of the oil-immersed type transformer. Three kinds of artificial neural network architectures, BPNN, RBFNN and PNN, were compared using 975 data, and then used trial and error method to find out the best model. After find out the best model using 20 data that is confirmed abnormal and 5892 historical data to observe and compare the ability of judgment along three kinds of network architectures. Test result discovers that the BPNN shows the best judgment accuracy, the next is RBFNN, the last is PNN. All three kinds show that their judgment accuracy are over 96%. Therefore, the feasible and accurate of the diagnosis system, ANN based on oil-immersed dissolved gas analysis are proved.

    中文摘要..............................................I 英文摘要..............................................II 致謝..............................................III 目錄....................................... IV 圖目錄................................. VII 表目錄................................... IX 第一章 緒論........................... 1 1.1 研究背景與目的.......... 1 1.2 文獻探討...................... 2 1.3 研究之主要貢獻.......... 5 1.4 各章節內容概述..........6 第二章 變壓器異常現象及測試................................ 7 2.1 簡介.............................. 7 2.2 變壓器結構及組成................................. 7 2.3 變壓器異常原因.......... 8 2.3.1 過熱現象........... 8 2.3.2 放電現象........... 9 2.3.3 老化現象........... 9 2.3.4 其他異常現象................................10 2.4 變壓器一般維護測試.....................................10 2.5 小結............................12 第三章 油中氣體分析之理論及異常診斷.............. 13 3.1 簡介............................ 13 3.2 油中氣體之產生因素............................. 13 3.2.1 絕緣油的熱分解............................. 14 3.2.2固體絕緣物的受熱分解......................... 15 3.3 現行其他公司或地區之使用規範................. 17 3.3.1 台灣電力公司現行研判基準.............. 17 3.3.2 北美地區研判基準.......................... 18 3.3.3 日本電氣協同研究所研判基準..................... 19 3.4油中氣體之理論及判斷方法.......................... 20 3.4.1 主要氣體分析法............................ 20 3.4.2 比值分析法.................... 22 3.4.3 杜佛三角形氣體比例圖形診斷法............ 27 3.4.4 等效過熱面積法................................. 28 3.4.5 線性SVM診斷法...................... 30 3.5小結............................ 33 第四章 類神經網路演算法............................ 34 4.1 簡介........................... 34 4.2 類神經網路類型............................ 35 4.3 類神經網路運作............................ 40 4.4 倒傳遞網路架構............................ 41 4.5 徑向基網路架構............................ 44 4.6 機率神經網路架構.......................... 46 4.7 小結............................ 47 第五章 類神經網路異常診斷系統設計.................. 48 5.1 簡介........................... 48 5.2 倒傳遞網路設計及測試....................... 48 5.3 徑向基網路設計及測試........................ 56 5.4 機率神經網路設計及測試............................. 57 5.5 歷年資料測試結果比較及分析................... 58 5.6 小結............................61 第六章 結論及未來研究方向........................... 63 6.1 結論........................... 63 6.2未來研究方向............ 64 參考文獻.............................. 65

    [1] 洪浡荏,「應用類神經網路於電力變壓器老化壽命損失估測」,國立台北科技大學電機工程系碩士學位論文,2010。
    [2] M. Wang, A. J. Vandermaar, and K. D. Srivastava, “Review of Condition Assessment of
    Power Transformers in Service, ” IEEE Transactions on Electrical Insulation, vol. 18,
    pp.12-25, 2002.
    [3] 胡立翔,「智慧型電力變壓器油中氣體診斷系統」,私立聖約翰科技大學電機工程系碩士學位論文,2012年7月。
    [4] 顏志丞,「基於變壓器油中氣體分析之故障可信度研究及設備管理系統開發」,國立台北科技大學電機工程系碩士學位論文,2010。
    [5] S. A. Ward, “Evaluating Transformer Condition Using DGA Oil Analysis,” IEEE
    Transactions on Electrical Insulation and Dielectric Phenomena, pp.463-468, 2003.
    [6] E. Chaidee and W. Tippachon, “Failure Statistics and Condition Evaluation for
    Power Transformer Maintenance,” IEEE Transactions on Power and Energy
    Engineering, pp.1-4, 2011.
    [7] A. Setayeshmehr, A. Akbari, H. Borsi, and E. Gockenbach, “A Procedure for Diagnosis
    and Condition based Maintenance for Power Transformers,” IEEE Transactions on
    Electrical Insulation, pp.504-507, 2004.
    [8] M. K. Pradhan and T. S. Ramu, “On the Estimation of Elapsed Life of Oil-immersed
    Power Transformers,” IEEE Transaction on Power Delivery, vol. 20, pp.1962-1969,
    2005.
    [9] 台灣電力公司供電處,「供電單位變電設備維護手冊」,2002。
    [10] J. L. Guardado, J. L. Naredo, P. Moreno, and C.R. Fuerte, “A Comparative Study of
    Neural Network Efficiency in Power Transformers Diagnosis Using Dissolved Gas
    Analysis,” IEEE Transactions on Power Delivery, vol. 16, pp.643-647, 2001.
    [11] K. V. Satyanarayana, C. C. Reddy, T. P. Govindan, M. Mandlik, and T. S. Ramu,
    “Application of Artificial Intelligence for the Assessment of the Status of Power
    Transformers,” IEEE Transactions on Electrical Insulation, pp.104-107, 2008.
    [12] M. R. Zaman, “Experimental Testing of the Artificial Neural Network Based
    Protection of Power Transformers,” IEEE Transactions on Power Delivery, vol. 13,
    pp. 510-517, 1998.
    [13] Y. Zhang, X. Ding, Y. Liu, and P. J. Griffin, “An Artificial Neural Network Approach
    to Transformer Fault Diagnosis,” IEEE Transactions on Power Delivery, vol. 11,
    pp. 1836-1841, 1996.
    [14] A. H. Zhou, H. Song, H. Xiao, and X. H. Zeng, “Power Transformer Fault Diagnosis
    Based on Integrated of Rough Set Theory and Neural Network, ” IEEE Transactions
    on Intelligent System Design and Engineering Application, pp. 1463-1465, 2012.
    [15] K. I. Annapoorani, D. B. Umamaheswari, “Fault Prediction Based on Dissolved Gas
    Concentration from Insulating Oil in Power Transformer Using Neural Network,”
    IEEE Transactions on Properties and Applications of Dielectric Materials, pp.1-4,
    2012.
    [16] 林安志,「線上變壓器油中氣體監控診斷系統之研究」,私立崑山科技大學
    電機工程系碩士學位論文,2003年6月。
    [17] 大同公司,「電力變壓器簡介資料」,2012。
    [18] 葛劍青,「變壓器檢修簡明手冊」,中國電子工業出版社,2008年9月。
    [19] IEC Publication 60599, “Mineral Oil-impregnated Electrical Equipment in Service –
    Guide to the Interpretation of Dissolved and Free Gases Analysis,” 2007.
    [20] 台灣電力公司,「TPC絕緣油規範I-002」,2000。
    [21] IEC Publication 60156, “Dielectric Breakdown Voltage Testing,” 1995.
    [22] 童耀宗,「變壓器油取樣與油中氣體分析」,台電綜合研究所,2005年9月。
    [23] IEEE Std. C57.104-1991, “IEEE Guide for the Interpretation of Gases Generated in
    Oil-Immersed Transformers,” 1992.
    [24] 「注油變壓器的維護管理」,日本電氣協同研究第54卷第5號,1992年2月。
    [25] 錢旭曜,「變壓器油及相關故障診斷處裡技術」,中國電力出版社,2008年5月。
    [26] E.Dornenburg and W.Strittmater, “Monitoring Oil Cooling Transformers by Gas Anysis, ” Brown Boveri Review,vol.61, pp.238-247, 1974.
    [27] R.R.Roger, “IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using
    Gas in Oil Analysis, ” IEEE Transactions on Electrical Insulation, pp.349-354, 1978.
    [28] B. Falou, “ Detection of and Research for the Characteristics of an Incipient Fault
    from Analysis of Dissovled Gas in the Oil of an Insulation, ” CIGRE Electra, no. 42,pp. 31-52, 1975.
    [29] M. Duval, “A Review of Faults Detectable by Gas-in-oil Analysis in Transformers,”IEEE Transactions on Electrical Insulation, vol:18 , issue: 3, pp.8-17, 2002.
    [30] C. Cortes and V. Vapnik, “Support-Vector Networks, ” Machine Learning, pp.1-31,1995.
    [31] 葉怡成,「類神經網路之應用與實作」,儒林出版社,1999。
    [32] 葉怡成,「以類神經網路預測混凝土非破壞檢測之抗壓強度」,中華工學院土木工程研究所碩士論文,1997。
    [33] 羅華強,「類神經網路MATLAB的應用」,清蔚科技,2001年9月。
    [34] 陳宗寶,「應用音射法於電力電纜之局部放電研究」,國立成功大學電機工程系碩士學位論文,2010年6月。
    [35] 黃淑枝,「應用類神經網路預測材料聲阻抗之研究」,國立成功大學造船暨船舶機械工程研究所碩士學位論文,2003年6月。
    [36] L. Zheng, W. Liu, and L. C. Lu, “Application of BP network based on free-weighting
    on transformer fault diagnosis,” IEEE Transactions on Information Technology and Artificial Intelligence, pp.229-232, 2011.
    [37] 陳榮志,「預測分析運用於訂購模式之研究-以A公司為例」,國立成功大學工學院工程管理系碩士學位論文,2008年6月。
    [38] 李穆,「以徑向基底類神經網路建立簡立梁位移場之研究」,國立台灣科技大學營建工程系碩士學位論文,2009年6月。
    [39] A. Li, X. Y. Sun, and D. H. Liu, “Application of RBF Network with Ant Colony and
    Fisher Ratio to Fault Diagnosis of Oil-Immersed Transformer,” IEEE Transactions on
    Natural Computation, pp.549-551, 2011.
    [40] S. Seifeddine, B. Khmais, and C. Abdelkader, “Power transformer fault diagnosis
    based on dissolved gas analysis by artificial neural network,” IEEE Transactions on
    Renewable Energies and Vehicular Technology, pp.230-236, 2012.
    [41] 曹銘介,「應用-小波機率神經網路於電力品質及特定諧波偵測之研究」,國立中山大學電機工程學系碩士學位論文,2004年6月。
    [42] S. Li, X. Y. Li, and W. X. Wong, “Fault Diagnosis of Transformer Based on Probabilistic Neural Network,” IEEE Transactions on Intelligent Computation
    Technology and Automation, pp.128-131, 2011,.
    [43] Q. F. Niu, L. Wang, and V. P. Shi, “Realization of a Power Transformer on-line Monitoring and Diagnosis System Based on DGA and PNN,” IEEE Transactions on Computer, Mechatronics, Control and Electronic Engineering pp.210-213, 2010.
    [44] 方世榮,「基礎統計學三版」,華泰文化,2008年6月。

    下載圖示 校內:2018-07-24公開
    校外:2023-01-01公開
    QR CODE