簡易檢索 / 詳目顯示

研究生: 莊文賢
Chuang, Wen-Hsien
論文名稱: 應用於超寬頻射頻頻率合成器之混頻器整合可切換式電感負載與壓控振盪器之設計
Mixer Design with the Integration of Switchable Inductive Loads and VCO’s for the UWB RF Synthesizer
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 131
中文關鍵詞: 混頻器切換電感超寬頻震盪器
外文關鍵詞: Mixer, Oscillator, UWB, Switchable inductor
相關次數: 點閱:101下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著重在應用於超寬頻射頻頻率合成器之混頻器設計。根據新的頻率規畫,我們提出了一個新的射頻頻率合成器架構應用在超寬頻多頻帶正交頻率分頻多工的系統中(UWB MB-OFDM System)。在混頻器設計中,主要著重在其負載的部分,為了有效降低功率的消耗,我們採用LC-tank的方式去取代電阻。由於超寬頻多頻帶涵蓋的頻寬範圍較廣,混頻器必須設計能夠操作在3.1-10.6 GHz的頻率範圍。若只使用單一感值的電感讓阻抗peak在6.5 GHz左右,會導致在較低頻或較高頻的部份會有輸出阻抗太低的現象,因此利用切換式電感架構來實現在寬頻帶負載,藉由MOS開關來切換兩種感值,使阻抗分別peak在5 GHz和8 GHz。可以在較低與較高的頻帶下有效提升輸出阻抗。
    在本文中,我們利用本實驗室所提出的一種新式的可切換差動電感結構,它相較於傳統可切換電感面積可節省約50%以上,可以有效減少晶片面積成本。在電感使用上,我們先利用電磁模擬軟體(ADS-Momentum)去模擬切換電感的特性,且分析並找出適合應用在我們的電路上的感值。為了有效的描述此切換電感行為,一個簡單的電感等效電路模型也被提出,此切換式電感等效電路模型之準確性可達10 GHz。整體電路在大訊號模擬結果下,顯示此四相位混頻器可操作在3.1-10.6 GHz。此四相位混頻器整合可切換式電感製作於台積電0.18um 1P6M標準RF CMOS製程。
    針對上述所設計的四相位混頻器量測部分。由於高頻(GHz)的四相位訊號源不容易取得。因此,另一個設計的重點是整合震盪器和混頻器,靠著震盪器所提供的震盪訊號提供給混頻器應用,並考量混頻器在10 GHz操作頻率下的操作特性之設計。為了要驗證我們所設計的混頻器可以在10 GHz左右操作,所以挑選可應用於超寬頻多頻帶系統中,讓兩個震盪器分別操作在3,168/4,224 MHz與6,072/ 7,128 MHz,而混頻器接收震盪訊號去進行升頻混頻動作,讓其頻率輸出在10.296 GHz。
    本論文主要新穎性如下:我們使用可切換式差動電感來製作可切換式電感性負載,讓混頻器可以操作在3-10 GHz的頻寬中,可應用於新的頻率合成器電路架構。此外,該新型可切換式電感不僅讓混頻器可以操作在超寬頻系統,且讓電路晶片面積消耗得以縮小約50%,成本得以降低。

    The paper mainly presents the design of mixer for UWB radio frequency synthesizer application. Base on new frequency plan, we propose a RF frequencysynthesizer for ultra-wide band multiband OFDM (UWB MB-OFDM System) applications. We mainly focus on load in our mixer design. In order to degrade the powerconsumption effectively, LC-tank structure is implemented instead of resistor. Due to UWB MB-OFDM system covers relative large frequency ranges, the mixer must be designed to be able to operate at 3.1 to 10.6 GHz frequency range. For unity inductance, the peak impedance appears at 6.5 GHz which could degrade the output impedance dramatically at high/low frequency bands. From above reasons, we use switchable inductors to realize wideband load. We combine a MOSFET transistor with the differential inductor as switch, which its peak impedance is 5 GHz and 8 GHz receptively. It is effective to improve the output impedance at high/low frequency bands.
    In this article, we apply a newly switchable differential inductor. Compare to traditional switch inductor structures, the proposed structure can release
    over 50% chip area and cost of chip can also be saved. For our design methods, we simulate the characteristics of this switchable inductor by ADS Momentum and choose the adapt one for our circuit inductance. In order to describe the switchable inductors’ behaviors, a simple equivalent circuit model is presented and this model accurate over 10 GHz. The complete circuit is simulated which shows that quadrature mixer can operate in 3.1 to 10.6 GHz. This
    quadrature mixer and differential integration uses TSMC 0.18um 1P6M standard RF CMOS process.
    For the measurement of the above-mentioned quadrature mixer design, due to quadrature signal source is hard to obtain, therefore another important point of this design is integration of oscillators and mixer. By using the signal generated by oscillators apply to mixer, we consider the operation features of mixer at 10 GHz for our design. To verify this proposed mixer can operate at 10 GHz. The two oscillators operate at 3,168/4,224 and 6,072/7,128 MHz for UWB system application which mixer receives the signal to up-convert the frequency to 10.296 GHz.
    The main creativity of this paper is as following: We use the switchable inductor to implement the switchable inductive loads. Thus, the mixer is able to operate at 3.1 to 10.6 GHz frequency range for new UWB radio frequency synthesizer application. Moreover, by using our proposed switchable inductor, the mixer not only can operate in UWB system, but also low area consumption and chip cost over 50%.

    Chinese Abstrcat.......................................I English Abstrcat.......................................III Acknowlegement.........................................V List of Tables.........................................VIII List of Figures........................................IX Chapter 1 Introduction..................................1 1.1 Background..........................................1 1.2 Motivation..........................................5 1.3 Thesis Organization.................................7 Chapter 2 Mixer.........................................9 2.1 Introduction........................................9 2.2 Mixer Fundamentals..................................9 2.2.1 Nonlinear Effects................................9 2.2.2 Inter-modulation.................................10 2.3 Performance Parameters..............................12 2.3.1 Linearity........................................12 2.3.2 Port-to-Port Isolation...........................15 2.3.3 Conversion Gain..................................16 2.3.4 Noise Figure.....................................16 2.4 Mixer Architectures.................................19 2.4.1 Passive Mixer....................................19 2.4.2 Active Mixer.....................................21 2.4.2.1 Single-balance Mixer..........................22 2.4.2.2 Double-balance Mixer..........................22 2.4.2.3 Comparison between Passive Mixer with Active Mixer.........................................28 Chapter 3 Oscillator....................................29 3.1 Introduction........................................29 3.2 Oscillator Fundamentals.............................29 3.2.1 Oscillator Theory................................29 3.2.1.1 Positive Feedback.............................30 3.2.1.2 One Port......................................31 3.3 Performance Parameters..............................32 3.3.1 Phase Noise......................................32 3.3.1.1 Effect of Phase Noise in RF Communications....33 3.3.1.2 Time-invariant Model..........................35 3.3.1.3 Time-variant Model............................36 3.3.2 Q of an Oscillator...............................42 3.4 The Basic Oscillator Topologies.....................43 3.4.1 Ring Oscillator..................................44 3.4.2 LC Oscillator....................................45 Chapter 4 Design and Simulation Results.................49 4.1 Design the Quadrature Mixer Using Switchable Inductive Loads for UWB Frequency Synthesizer.................49 4.1.1 Quadrature Mixer Structure.......................54 4.1.1.1 Switchable Differential Inductor..............55 4.1.1.2 Core Circuit..................................64 4.1.1.3 Buffer Stage..................................64 4.1.1.4 Layout and Photo of the Quadrature Mixer......66 4.1.2 Simulation Results...............................67 4.1.2.1 Transient Response............................67 4.1.2.2 Conversion Gain...............................69 4.1.2.3 Noise Figure..................................73 4.1.2.4 P-1dB Compression Point.......................75 4.1.2.5 Isolation.....................................77 4.1.2.6 Expected Specification........................78 4.1.2.7 The Improved Quadrature Mixer.................79 4.2 Design the Integration of VCO’s and Mixer for UWB Frequency Synthesizer...............................80 4.2.1 Integration of VCO’s and Mixer Structure........81 4.2.1.1 Core Circuit of VCO’s........................82 4.2.1.2 Core Circuit of Mixer.........................89 4.2.1.3 Layout and Photo of the Integration of VCO’s and Mixer.....................................90 4.2.2 Simulation Results...............................91 4.2.2.1 Transient Response............................91 4.2.2.2 Tuning Range of VCO’s........................94 4.2.2.3 Phase Noise of VCO’s.........................96 4.2.2.4 Power Spectrum................................100 4.2.2.5 The Relationship between I¬bias and VCO Performance...................................103 4.2.2.6 The Variation of Voltage Supply...............105 4.2.2.7 Expected Specification....................... 106 Chapter 5 Measurement Results...........................107 5.1 Measurement Results of the Quadrature Mixer Using Switchable Inductive Loads for UWB Frequency Synthesizer.........................................107 5.1.1 Measurement Considerations.......................107 5.1.2 DC Measurement...................................108 5.2 Measurement Results of the Integration of VCO’s and Mixer for UWB Frequency Synthesizer.................109 5.2.1 Measurement Considerations.......................109 5.2.2 Power Spectrum...................................112 5.2.3 Phase Noise of VCO’s............................116 5.2.4 Tuning Range of VCO’s...........................120 5.2.5 Performance......................................121 Chapter 6 Conclusions and Future Work...................123 6.1 Conclusions.........................................123 6.2 Future Work.........................................125 References..............................................127

    [1] Lawrence Williams, Daniel Wu, Eldon Staggs, and
    Albert Yen, “Ultra- Wideband Radio Design for
    Multi-band OFDM 480 Mb/s Wireless USB,”
    DesignCon2005, Ansoft Corporation.
    [2] MultiBand OFDM Alliance SIG, “Multi-band OFDM
    Physical Layer Proposal for IEEE 802.15 Task
    Group 3a,” Sep. 14, 2004.
    [3] Remco C.H. van de Beek, Domine M. W. Leenaerts,
    and Gerard van der Weide, ”A fast-hopping single-
    PLL 3-band MB-OFDM UWB synthesizer,” Solid-State
    Circuits, IEEE Journal of , Vol.41, Issue 7,
    pp.1522- 1529, July 2006.
    [4] Jri Lee , “A 3-to-8-GHz fast-hopping frequency
    synthesizer in 0.18-/spl mu/m CMOS technology,”
    Solid-State Circuits, IEEE Journal of, Vol.41,
    Issue 3, pp.566- 573, March 2006.
    [5] B. Razavi, T. Aytur, C. Lam, Fei-Ran Yang, Kuang-
    Yu Li, Ran-Hong Yan, Han- Chang Kang, Cheng-Chung
    Hsu, and Chao-Cheng Lee, “A UWB CMOS
    Transceiver,” Solid-State Circuits, IEEE Journal
    of, Vol.40, Issue 12, pp.2555- 2562, Dec. 2005.
    [6] Seong-Mo Yim and Kenneth K. O., “Demonstration
    of a switched resonator concept in a dual-band
    monolithic CMOS LC-tuned VCO,” Proceedings of
    the IEEE 2001 Custom Integrated Circuit
    Conference., pp.205-208, May 2001.
    [7] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS
    oscillators with switched Tuning,” Proceedings
    of the IEEE 1998 Custom Integrated Circuits
    Conference, pp. 555-558, May 1998.
    [8] A. Fard, T. Johnson, M. Linder, and D. Aberg, “A
    comparative study of CMOS LC VCO topologies for
    wide-band multi-standard transceivers,” 47th
    IEEE International Midwest Symposium on Circuit
    and System, Vol.31, pp.III-17~20, 2004.
    [9] Zhenbiao Li and Kenneth K. O., “A 1 -V Low Phase
    Noise Multi-Band CMOS Voltage Controlled
    Oscillator with Switched Inductors and
    Capacitors,” IEEE 2004 Radio Frequency
    Integrated Circuits Symposium, pp.467-470, 2004.
    [10] B. Razavi, “RF Microelectronics,” Englewood
    Cliffs, NJ: Prentice-Hall, 1998
    [11] M. J. Gingell, “Single sideband modulation using
    sequence asymmetric polyphase networks,”
    Electrical Commun., Vol.48, pp.21-25, 1973.
    [12] Tae Wook Kim, Bonkee Kim, and Kwyro Lee, “Highly
    linear receiver front-end adopting MOSFET
    transconductance linearization by multiple gated
    transistors,” Solid-State Circuits, IEEE Journal
    of, Vol.39, Issue 1, pp.223-229, Jan. 2004.
    [13] Keng Leong Fong and R. G. Meyer, “Monolithic RF
    active mixer design,” Circuits and Systems II:
    Analog and Digital Signal Processing, IEEE
    Transactions on [see also Circuits and Systems
    II: Express Briefs, IEEE Transactions on],
    Vol.46, Issue 3, pp.231-239, March 1999.
    [14] Keng Leong Fong, C. D. Hull, and R. G. Meyer, “A
    class AB monolithic mixer for 900-MHz
    applications,” Solid-State Circuits, IEEE
    Journal of, Vol.32, Issue 8, pp.1166-1172, Aug.
    1997.
    [15] Q. Li and J. S. Yuan, “Linearity analysis and
    design optimization for 0.18 μm CMOS RF mixer,”
    Circuits, Devices and Systems, IEE Proceedings-,
    Vol.149, Issue 2, April 2002.
    [16] C. D. Hull, Joo Leong Tham, and R. R. Chu, “A
    direct-conversion receiver for 900 MHz (ISM band)
    spread-spectrum digital cordless telephone,”
    Solid-State Circuits, IEEE Journal of, Vol.31,
    Issue 12, pp.1955-1963, Dec. 1996.
    [17] Keng Leong Fong and R. G. Meyer, “High-frequency
    nonlinearity analysis of common-emitter and
    differential-pair transconductance stages,”
    Solid-State Circuits, IEEE Journal of, Vol.33,
    Issue 4, pp.548-555, Apr. 1998.
    [18] Hung-Che Wei, Ro-Min Weng, and Kun-Yi Lin, “A
    1.5 V high-linearity CMOS mixer for 2.4 GHz
    applications,” Circuits and Systems, 2004.
    ISCAS'04. Proceedings of the 2004 International
    Symposium on, Vol.1, pp.I-561-4, May 2004.
    [19] I. Rovira, P. Sivonen, S. Rintamaki, and M.
    Honkanen, “Highly linear TX IF-chip for
    multicarrier GSM 900 and 1800 base station,”
    Circuits and Systems, 2001., ISCAS 2001., The
    2001 IEEE International Symposium on, Vol.4,
    pp.762-765, May 2001.
    [20] P. J. Sulivan, B. A. Xavier, and W. H. Ku, ”Low
    voltage performance of a microwave CMOS Gilbert
    cell mixer,” Solid-State Circuits, IEEE Journal
    of, Vol.32, Issue 7, pp.1151-1155, Jul. 1997.
    [21] H. M. Tuncer, F. Udrea, and G. A. J. Amaratunga,
    “A 5 GHz low power 0.18/spl mu/m CMOS Gilbert
    cell mixer,” Semiconductor Conference, 2004. CAS
    2004 Proceedings. 2004 International, Vol.1, pp.-
    164, Oct. 2004.
    [22] O. Mitrea, C. Popa, A. M. Manolescu, and M.
    Glesner, “A linearization technique for radio
    frequency CMOS Gilbert-type mixers,”
    Electronics, Circuits and Systems, 2003. ICECS
    2003. Proceedings of the 2003 10th IEEE
    International Conference on, Vol.3, pp.1086-1089,
    Dec. 2003.
    [23] T. H. Lee, “The Design of CMOS Radio-Frequency
    Integrated Circuits,” Cambridge University
    Press, 1998.
    [24] H. Darabi and A. A. Abidi, “Noise in RF-CMOS
    mixers: a simple physical model,” Solid-State
    Circuits, IEEE Journal of, Vol.35, Issue 1, pp.15-
    25, Jan 2000.
    [25] M. T. Terrovitis and R. G. Meyer, “Noise in
    current-commutating CMOS mixers,” Solid-State
    Circuits, IEEE Journal of, Vol.34, Issue 6 ,
    pp.772-783, Jun. 1999.
    [26] B. Gilbert, "A Precise Four-Quadrant Multiplier
    with Subnanosecond Response," Solid-State
    Circuits, IEEE Journal of, Vol.3, Issue 4, pp.365-
    373, Dec. 1968.
    [27] S. Weiner, D. Neuf, and S. Spohrer, “2 to 8 GHz
    double balanced MESFET mixer with +30 dBm input
    3rdorder intercept,” Microwave Symposium Digest,
    1988., IEEE MTT-S International, Vol.2, pp.1097-
    1100, May 1988.
    [28] J. Crols and M. S. J. Steyaert, “A 1.5 GHz
    highly linear CMOS downconversion mixer,” Solid-
    State Circuits, IEEE Journal of, Vol.30, Issue 7,
    pp.736-742, Jul. 1995.
    [29] C. Yu and J. S. Yuan, “Linearity and power
    optimization of a microwave CMOS Gilbert cell
    mixer,” Electron Devices for Microwave and
    Optoelectronic Applications, 2003, EDMO 2003, The
    11th IEEE International Symposium on, pp. 234-
    239, Nov. 2003.
    [30] Chuanzhao Yu, J. S. Yuan, and Hong Yang, “MOSFET
    linearity performance degradation subject to
    drain and gate voltage stress,” Device and
    Materials Reliability, IEEE Transactions on,
    Vol.4, Issue 4, pp.681- 689, Dec. 2004.
    [31] J. Park, C.-HO Lee, B.-S. Kim, and J. Laskar,
    “Design and Analysis of Low Flicker-Noise CMOS
    Mixers for Direct-Conversion Receivers,”
    Microwave Theory and Techniques, IEEE
    Transactions on, Vol.54, Issue 12, pp.4372-4380,
    Dec. 2006.
    [32] H. Darabi and J. Chiu, “A Noise Cancellation
    Technique in Active RF-CMOS Mixers,” Solid-State
    Circuits, IEEE Journal of, Vol.40, Issue 12,
    pp.2628-2632, Dec. 2005.
    [33] 魏宏哲, “高線性度降頻混頻器設計,” 國立東華大學電
    機工程研究所碩士論文, 2003.
    [34] B. Razavi, “Design of Analog CMOS Integrated
    Circuits,” McGraw-Hill, 2002.
    [35] A. Hajimiri and T. H. Lee, “A general theory of
    phase noise in electrical oscillators,” Solid-
    State Circuits, IEEE Journal of, Vol.33, Issue 2,
    pp.179-194, Feb. 1998.
    [36] A. Hajimiri and T. H. Lee, “Phase noise in CMOS
    differential LC oscillators,” VLSI Circuits,
    1998. Digest of Technical Papers. 1998 Symposium
    on, pp.48-51, Jun. 1998.
    [37] J. Craninckx and M. Steyaert, “Low-noise voltage-
    controlled oscillators using enhanced LC-tanks,”
    Circuits and Systems II: Analog and Digital
    Signal Processing, IEEE Transactions on [see also
    Circuits and Systems II: Express Briefs, IEEE
    Transactions on], Vol.42, Issue 12, pp.794-804,
    Dec.1995.
    [38] Guillermo. Gonzalez, “Microwave Transistor
    Amplifiers Analysis and Design,” Sec.5.2,
    Oscillation Conditions.
    [39] 羅日龍, ”使用0.18um CMOS之2GHz低相位雜訊壓控震盪
    器,” 國立東華大學電機工程研究所碩士論文, 2003.
    [40] D. Leenaerts, R. van de Beek, G. van der Weide,
    J. Bergervoet, K. S. Harish, H. Waite, Y. Zhang,
    C. Razzell, and R. Roovers,, “A SiGe BiCMOS 1ns
    fast hopping frequency synthesizer for UWB
    radio,” Solid-State Circuits Conference, 2005.
    Digest of Technical Papers. ISSCC. 2005 IEEE
    International, Vol.1, pp.202-259, Feb. 2005.
    [41] C. Sandner and A. Wiesbauer ,“A 3 GHz to 7 GHz
    fast-hopping frequency synthesizer for UWB,” in
    Joint Int. Ultra Wideband Systems Workshop/
    Ultrawideband Systems and Technologies Conf.,
    pp.405-409, May 2004.
    [42] Choong-Yul Cha, Eun-Chul Park, Hyun-Su Chae, Chun-
    Deok Suh, Jung- Eim Lee, Jeongwook Koh, Hanseung
    Lee, and Hoon-Tae Kim, “A fast frequency/mode
    switching quadrature SSB mixer/amplifier for the
    low power MTG in MB-OFDM UWB radio transceiver,”
    Silicon Monolithic Integrated Circuits in RF
    Systems, 2006. Digest of Papers. 2006 Topical
    Meeting on, pp.18-20, Jan. 2006.
    [43] C. Mishra, A. Valdes-Garicia, F. Bahmani, A.
    Batra, E. Sanchez-Sinencio, and J. Silva-
    Martinez, “Frequency Planning and Synthesizer
    Architectures for Multiband OFDM UWB Radios,”
    IEEE Trans. on Microwave Theory and Techniques.,
    Vol. 53, Issue 12, pp.3744-3756, 2005.
    [44] A. Batra et al., “Multi-band OFDM physical layer
    proposal,” IEEE, Piscataway, NJ, IEEE 802.15-
    03/267r1-TG3a, Jul. 2003
    [45] Z. Li and Kenneth K. O, ”A Low-Phase-Noise and
    Low-Power Multiband CMOS Voltage-Controlled
    Oscillator,” Solid-State Circuits, IEEE Journal
    of, Vol.40, Issue 6, pp.1296-1302, June 2005.
    [46] S. Li, J. Zohios, J. H Choi, and M. Ismail, "RF
    CMOS Mixer Design and Optimization for Wideband
    CDMA Application," Mixed-Signal Design, 2000.
    SSMSD. 2000 Southwest Symposium on, pp.45-50,
    2000.
    [47] Q. Huang, F. Piazza, P. Orsatti, and T.
    Ohguro, "The Impact of Scaling Down to Deep
    Submicron on CMOS RF Circuits," Solid-State
    Circuits, IEEE Journal of, Vol.33, Issue 7, July
    1998.
    [48] F. Stubbe, S. V. Kishore, C. Hull, and V. Della
    Torre, "A CMOS RF-Receiver Front - End for 1GHz
    Applications," in Proc. of Symposium on VLSI
    Circuits, 1998.
    [49] B. De Muer, M. Borremans, M. Steyaert, and G. Li
    Puma, “A 2-GHz low- phase-noise integrated LC-
    VCO set with flicker-noise upconversion
    minimization,” Solid-State Circuits, IEEE
    Journal of, Vol.35, Issue 7, pp.1034- 1038, Jul.
    2000.
    [50] A. Jerng and C.G. Sodini, “The impact of device
    type and sizing on phase noise mechanisms,”
    Solid-State Circuits, IEEE Journal of, Vol.40,
    Issue 2, pp.360- 369, Feb. 2005.
    [51] Hyunchol Shin, Zhiwei Xu, and M. F. Chang, ”A
    1.8-V 6/9-GHz switchable dual-band quadrature LC
    VCO in SiGeBiCMOS technology,” Radio Frequency
    Integrated Circuits (RFIC) Symposium, 2002 IEEE,
    pp.71-74, 2002.
    [52] Ting-Ping Liu , “A 6.5 GHz monolithic CMOS
    voltage-controlled oscillator,” Solid-State
    Circuits Conference, 1999. Digest of Technical
    Papers. ISSCC. 1999 IEEE International, pp.404-
    405, 1999.
    [53] Tzuen-Hsi Huang and Jia-Lun Wang, “New Frequency
    Plan and Reconfigurable 6.6 / 7.128 GHz CMOS
    Quadrature VCO for MB-OFDM UWB Application,”
    Microwave Symposium, 2007. IEEE/MTT-S
    International, pp.843-846, June 2007.
    [54] Ming-Ching Kuo, Chun-Ming Hsu, Chun-Lin Ko, Tsung-
    Hsien Lin, and Yi-Bin Lee, “A CMOS WLAN/GPRS
    dual-mode RF front-end receiver,” Radio
    Frequency Integrated Circuits (RFIC) Symposium,
    2004. Digest of Papers. 2004 IEEE, pp.153- 156,
    June 2004.

    下載圖示 校內:2008-08-28公開
    校外:2008-08-28公開
    QR CODE