簡易檢索 / 詳目顯示

研究生: 李婉菁
Li, Wan-Jing
論文名稱: 具有製程與溫度補償的晶片內嵌式參考震盪器
On-Chip Reference Oscillators with Process and Temperature Compensation
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 66
中文關鍵詞: 補償震盪器
外文關鍵詞: oscillator, compensate
相關次數: 點閱:115下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在系統單晶片技術中,內嵌式震盪器不需要外部的晶體震盪器電路,因此能夠降低生產成本以及節省印刷電路板的面積。然而晶片內嵌式震盪器的參考頻率卻會隨著製程、電源電壓、溫度的漂移而改變。因此我們提出兩種架構的設計,都不需要使用雙載子接面電晶體或者任何外部元件。第一個設計是具有電流補償技巧的參考震盪器,佈局後的模擬結果顯示最大的頻率漂移是12%。在第二個設計中,我們使用一個適應性偏壓電路去補償製程跟溫度造成的頻率漂移,即使在最差的條件下,頻率漂移還是可以維持在5%以內。所提出的參考震盪器能提供良好的內嵌式參考時脈訊號給系統單晶片。

    In system-on-chip (SoC) technology, on-chip oscillators eliminate the need for an external crystal oscillator circuit, reduce production cost and decrease printed circuit board size. However, on-chip reference frequencies suffer from process, supply voltage, and temperature (PVT) variations. Therefore, we propose two architectures without bipolar junction transistors (BJTs) or any external component. The first design is a current compensated reference oscillator. The post-layout simulation shows that the maximum frequency variation is 12%. In the second design, we use an adaptive biasing circuit to compensate for process and temperature deviation. Even in the worst case, the frequency variation is under 5%. The proposed reference oscillator provides an efficient embedded solution for SoC chips.

    List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Basics of Oscillators 3 2.1 General Considerations 3 2.2 Architectures of Oscillators 6 2.2.1 Ring Oscillators 6 2.2.2 LC Oscillators 8 2.2.3 Voltage-Controlled Oscillators 12 2.2.4 Crystal Oscillators 16 2.2.5 Comparison of Oscillators 18 2.3 Sources of Frequency Variation 19 Chapter 3 Current Compensated Reference Oscillator 22 3.1 Conventional Ring-Oscillator-Based Oscillator 22 3.2 Architecture of the Proposed Current Compensated Oscillator 26 3.2.1 Main Ring Oscillator with Current-Starved Inverters 28 3.2.2 Auxiliary Oscillator with Inverter Chain 30 3.2.3 Bias Generator with Current Compensation 31 3.3 Simulation Results 32 3.4 Measurement Results 37 Chapter 4 Process and Temperature Compensated Reference Oscillator 49 4.1 Architecture of the Process and Temperature Compensated Oscillator 49 4.1.1 Oscillator and Bias Generator 51 4.1.2 Temperature and Process Compensation for the Oscillator 53 4.2 The Proposed Reference Oscillator with An Adaptive Biasing Circuit 55 4.2.1 Oscillator and Bias Generator 56 4.2.2 Adaptive Biasing Circuit for Process and Temperature Compensation 57 4.3 Simulation Results 58 Chapter 5 Conclusion 63 Bibliography 65

    [1] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2001.
    [2] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Edition. Oxford University Press, 1998.
    [3] N. H. E. Weste and D. Harris, CMOS VLSI Design, A Circuits and Systems Perspective, 3rd Edition. Pearson Education, 2005.
    [4] K. Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
    [5] Y.-S. Shyu and J.-C. Wu, “A process and temperature compensated ring oscillator,” in Proc. Asia Pacific Conf. ASICs, Aug. 1999, pp. 283-286.
    [6] N. R. Mahapatra, A. Tareen, and S. V. Garimella, “Comparison and analysis of delay elements,” in Proc. 45th Midwest Symp. Circuits and Syst., Aug. 2002, vol. 2, pp. II-473-II-476.
    [7] M.-T. Tan, Joseph S. Chang, and Y.-C. Tong, “A process-independent threshold voltage inverter-comparator for pulse width modulation applications,” in Proc. 6th IEEE Int. Conf. Electro., Circuits and Syst., Sept. 1999, vol. 3, pp. 1201-1204.
    [8] K. Sundaresan, K. C. Brouse, K. U-Yen, F. Ayazi, and P. E. Allen, “A 7-MHz process, temperature and supply compensated clock oscillator in 0.25m CMOS,” in Proc. Int. Symp. Circuits and Syst., May 2003, vol. 1, pp. I-693-I-696.
    [9] A. Olmos, “A temperature compensated fully trimmable on-chip IC oscillator,” in Proc. 16th Symp. Int. Circuits and Syst. Design, Sept. 2003, pp. 181-186.
    [10] A. V. Boas and A. Olmos, “A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability,” in Proc. Int. Symp. Circuits and Syst., May 2004, vol. 1, pp. I-501-I-504.
    [11] W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS low-phase-noise voltage-controlled ring oscillator,” IEEE Trans. Circuit Syst. II, Analog and Digital Signal Processing, vol. 48, pp. 216-221, Feb. 2001.
    [12] Y. Li, Y.-F. Shi, L. Li, and Z.-Y Zheng, “CMOS bandgap voltage reference with 1.8-V power supply,” in Proc. Int. Symp. Circuits and Syst., Oct. 2003, vol. 1, pp. 611-614.
    [13] G.-E. Ning and C. Chen, “A frequency stabilization circuit for the voltage controlled ring oscillator,” in Proc. Int. Symp. Circuits and Syst., Oct. 2007, pp. 333-336.
    [14] J. G. Maneatis and M. A. Horowitz, “Precise delay generation using coupled oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
    [15] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
    [16] H. Chen, E. Lee, and R. Geiger, “A 2GHz VCO with process and temperature compensation,” in Proc. Int. Symp. Circuits and Syst., June 1999, vol. 2, pp. II-569-II-572.
    [17] J. Routama, K. Koli, and K. Halonen, “A novel ring-oscillator with a very small process and temperature variation,” in Proc. Int. Symp. Circuits and Syst., June 1998, vol. 1, pp. I-181-I-184.
    [18] G. D. Vita and G. Iannaccone, “An ultra-low-power, temperature compensated voltage reference generator,” in Proc. IEEE Cust. Int. Circuits Conf., Sept. 2005, pp. 751-754.

    下載圖示 校內:2013-08-28公開
    校外:2013-08-28公開
    QR CODE