簡易檢索 / 詳目顯示

研究生: 翁逸鵬
Wong, Yi-Peng
論文名稱: 鈮酸鈉鉀壓電陶瓷之製作及其在表面聲波濾波器的應用
Fabrications of the lead-free (Na0.5K0.5)NbO3-SrTiO3 piezoelectric ceramics and their applications on the Surface Acoustic Wave (SAW) Filters
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 無鉛鈮酸鈉鉀壓電
外文關鍵詞: piezoelectric, lead-free, potassium sodium niobate
相關次數: 點閱:49下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來隨著國際環保意識提高,許多化學物質被限期禁止使用。其中鋯鈦酸鉛(PZT)為最常使用的壓電材料,但替代品開發不易,故發展無鉛材料為目前的趨勢。鈮酸鈉鉀(NKN)為具有鈣鈦礦結構之鐵電材料,其良好的壓電特性使其成為無鉛壓電材料的熱門人選之一。
      在本實驗中,以固態反應法來製作陶瓷體,探討摻雜鈦酸鍶(STO)對鈮酸鉀的影響,實驗結果在STO摻雜濃度為0.5 mol%時有最大機電耦合因數,量得厚度機械耦合因數(kt)和徑向機電耦合因數(kp)分別為42%和38%,經由電滯曲線的量測其Ec和Pr值分別為12.4 KV/cm與11.7 μC/cm2。本實驗中亦成功以NKN-STO無鉛陶瓷基板製作出表面聲波濾波器,並量得波速、頻率溫度係數(TCF)、機電耦合因數K2。

      Recently, due to the raise of environmental sense many chemical substances will be inhibited. PZT is the piezoelectric material which is most often used, but the substituted development is not easy. Therefore, develops of the lead-free materials is the present tendency. Potassium sodium niobate (Na1-xKxNbO3) is a ferroelectric material of perovskite structure. The good piezoelectric characteristics makes it to be one of popular candidates of lead-free piezoelectric material.
      In this report, we fabricate ceramics with the soild state reaction method and investigate the effect of Strontium Titanate (SrTiO3) dopants. The results showed that the SrTiO3 doped with 0.5 mol% has great electromechanical planar and thickness coupling coefficients of kp = 38% and kt = 42%. By measurement of P-E curve, the remanent polarization and coercive field are 12.4 KV/cm and 11.7 μC/cm2, respectively. In this report, we successful fabricate the surface acoustic wave filters on the lead-free NKN substances. The phase velocity, temperature coefficient of frequency (TCF) and mechanical electrical coupling of factor K2 are measured.

    摘要 Ⅰ 英文摘要 Ⅱ 表圖目錄 Ⅵ 第一章 緒論..................................................................1 1.1 研究背景與動機............................................................1 1.2 論文架構..................................................................3 第二章 原理...................................................................4 2.1 壓電效應..................................................................4 2.1.1 正壓電效應(Direct piezoelectric effect).................................4 2.1.2 逆壓電效應(Converse piezoelectric effect)...............................4 2.2 壓電方程式................................................................6 2.3 壓電諧振體................................................................8 2.4 壓電材料之種類與ABO3陶瓷材料.............................................10 2.5 壓電特性參數.............................................................13 2.5.1 機電耦合因數(electromechanical coupling factor, K).....................13 2.5.2 介電損失(dielectric loss)..............................................14 2.5.3 機械品質因數(mechanical quality factor)................................14 2.6 鐵電效應.................................................................16 2-6-1 電滯曲線...............................................................16 2.7 表面聲波濾波器基本原理...................................................18 2.7.1 基本概念...............................................................18 2.7.2 SAW FILTER等效電路及模型分析...........................................19 第三章 製程步驟與量測.......................................................22 3.1陶瓷體的製備..............................................................22 3.2 SAW FILTER的製作.........................................................24 3.3分析與測試................................................................26 3.3.1 陶瓷體特性分析與量測...................................................26 3.3.2 SAW FILTER量測.........................................................31 4.1 STO摻雜對NKN陶瓷的影響...................................................32 4.2 SAW FILTER之特性.........................................................40 第五章 結論.................................................................41 5.1 結論.....................................................................41 5.2 未來研究方向.............................................................42 參考文獻.....................................................................43

    [1] S. Roberts, Phys. Rev., 71, 890, (1947).
    [2] B. Jaffe, R. S. Roth and S. Marzullo, Jour. Res. Nat. Bur. Stds., 55, 239, (1955).
    [3] Q. Tan and D. Viehland, Jour. Am. Ceram. Soc., 81, 328, 1998.
    [4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York, (1982).
    [5] T. Ogawa, and K. Wakino, Jour. Ceram. Soc. Jap., 92, 510, (1984).
    [6] C. C. Tseng, J. Appl. Phys., 38, 4281 (1967).
    [7] M. Kodama, H. Egami and S. Yoshida, Jpn. J. Appl. Phys., 14, 1847 (1975).
    [8] Y. Ito, H. Takeuchi, S. Jyomura, K. Nagatsuma and Ashida, Appl. Phys. Lett., 35, 595 (1979).
    [9] H. Takeuchi and K. Yamashita, J. Appl. Phys., 53, 6147, (1982).
    [10] W. Damjanovic, H. Wolny, M. Engan, L. Lethiecq and Pardo., IEEE Intern. Freq. Contr. Symp., 770 (1998).
    [11] S. Y. Chu, T. Y. Chen, IEEE Trans. on Ultra. Ferroe. and Freq. Cont., 51, 6, (2004).
    [12] S. Y. Chu, T. Y. Chen, I-Ta Tsai, Materials Letters, 58, 752, (2004).
    [13] S. Y. Chu, T. Y. Chen, Sensors and Actuators, 107, 75, (2003).
    [14] Y. Guo, K. Kakimoto, H. Ohsato, Solid State Comm., 129, 279, (2004).
    [15] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jap. Jour. of Appl. Phys., 43, 7159, (2004).
    [16] Y. Li, W. chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Mate. Sci. & Engin., 112, 5, (2004).
    [17] S. Park, C. Ahn, S. Nahm, J. Song, Jap. Jour. of Appl. Phys., 43, 1072, (2004).
    [18] Y. Guo, K. Kakimoto, H. Ohsato., Appl. Phys. Lett., 85, 4121, (2004).
    [19] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7-9 (1994).
    [20] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 16-22 (1994).
    [21] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics”, 25.
    [22] B. Jaffe, W. R. Cook, and Jr. and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [23] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 117-125 (1994).
    [24] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 31-32 (1994).
    [25] C.K.CAMPBELL , “Surface acoustic wave devices for mobile and wirelesscommunication”, 71
    [26] Supriyo Datta. , “Surface acoustic wave devices”, 18
    [27] David P. Morgan , “Surface –wave devices for signal processing” , 57
    [28] C.K.Campball , “Surface acoustic wave devices for mobile and wireless communication”, 113
    [29] C.K.Campball , “Surface acoustic wave devices for mobile and wirelesscommunication”, 101
    [30] “IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric Ceramics, 1961”Proc. IRE, 49, 1161, (1961).
    [31] M. Onoe, H. F. Tiersten, and A. H. Meitzier“Shift in the Location of Resonant Frequencies Caused by Large Electromechanical Coupling in Thickness-mode Resonator”J. Acoust. Soc. Am., 35, 36, (1963).
    [32] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 49, (1994).
    [33] L. Egerton, D. M. Dillon, J. Am. Ceram. Soc., 42, 438, (1959).
    [34] R. E. Jaeger, L. Egerton, J. Am. Ceram. Soc., 45, 209, (1962).
    [35] 吳朗, “電工材料” 全欣科技圖書, 198-208 (1994).

    下載圖示 校內:2010-07-12公開
    校外:2015-07-12公開
    QR CODE