簡易檢索 / 詳目顯示

研究生: 龍豪恩
Alonso, Joel
論文名稱: 氮化鎵功率元件並聯之雜散特性研究
A Study of Parasitic Characteristics on Paralleled GaN HEMTs
指導教授: 謝旻甫
Hsieh, Min-fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 145
中文關鍵詞: 氮化鎵功率元件寄生參數元件並聯
外文關鍵詞: Gallium Nitride Power Transistor, Parasitic Components, Paralleled Devices
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Summary 1 Acknowledgements 3 Table of Contents 5 List of Tables 7 List of Figures 8 List of Symbols 14 Chapter 1. Introduction 17 1.1 Background 17 1.2 Literature Review 21 1.2.1 GaN HEMTs in Power Electronics 21 1.2.2 Increasing Current Capability by Paralleling GaN HEMTs 23 1.2.3 Parasitic Influence When Paralleling GaN HEMTs 25 1.2.4 Summary 27 1.3 Research Motivation and Purpose 28 1.4 Thesis Structure 29 Chapter 2. Current Scaling with Paralleled GaN HEMTs 31 2.1 Principle of Paralleling Power Semiconductor Devices 31 2.2 Comparison of Paralleling MOSFETS and GaN HEMTs 32 2.2.1 Package Architecture and Parasitic Implications 33 2.2.2 Reverse Conduction Characteristics 34 2.2.3 Layout and Parasitic Effects 36 2.2.4 Gate Drive Synchronization and Active Balancing 37 2.2.5 Parasitic Sensitivity Due to Switching Speed 37 2.3 Summary 38 Chapter 3. Parasitic Analysis of Paralleled GaN Devices 39 3.1 Finite Element Analysis and Multi-Physics System Integration 39 3.3.1 Passivity and Causality 40 3.3.2 Mathematical Definition of Passivity and Causality 43 3.2 Effects of Parasitics in Paralleled GaN HEMT 44 3.4.1 Double Pulse Test Recap 45 3.4.2 Gate Driver Requirements for Paralleled GaN HEMTs 49 3.4.3 Intrinsic Device Parameters Mismatch 50 3.4.4 Influences of Parasitic Inductance on Vgs 52 3.4.5 Influences of Parasitic Inductance on Vds 52 3.4.6 Influences of Parasitic Capacitance on Ids 58 3.3 Summary 59 Chapter 4. Hardware and Layout Design of the Half Bridge 60 4.1 GaN HEMT power device Specifications 60 4.2 GaN Half-Bridge Architecture 62 4.3 Parasitic Parameters Extraction Across Design Iterations 66 4.4 Simulation Results 71 4.5 Arbitrary Signal Generator 99 4.6 Summary 101 Chapter 5. Experiment Results 103 5.1 Experiment Setup 103 5.2 Results and Discussion 104 Chapter 6. Conclusion and future prospects 130 6.1 Conclusions 130 6.2 Future Work 132 Reference 133

    [1]S. M. S. H. Rafin, R. Ahmed, M. A. Haque, M. K. Hossain, M. A. Haque, and O. A. Mohammed, “Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices,” Micromachines, vol. 14, no. 11, p. 2045, Nov. 2023, doi: https://doi.org/10.3390/mi14112045.
    [2]A. Kumar, M. Moradpour, M. Losito, W.-T. Franke, S. Ramasamy, R. Baccoli, and G. Gatto, “Wide Band Gap Devices and Their Application in Power Electronics,” Energies, vol. 15, no. 23, p. 9172, Dec. 2022, doi: https://doi.org/10.3390/en15239172.
    [3]E. A. Jones, F. F. Wang, and D. Costinett, “Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, Sept. 2016, doi: 10.1109/JESTPE.2016.2582685
    [4]T. Van Do, J. P. F. Trovão, K. Li, and L. Boulon, “Wide-Bandgap Power Semiconductors for Electric Vehicle Systems: Challenges and Trends,” IEEE Vehicular Technology Magazine, vol. 16, no. 4, pp. 89–98, Dec. 2021, doi: https://doi.org/10.1109/MVT.2021.3112943.
    [5]S. Aboud, “Enabling New Applications with SiC IGBT and GaN HEMT for Power Module Design,” Semiengineering.com. [Online]. Available: https://semiengineering.com/enabling-new-applications-with-sic-igbt-and-gan-hemt-for-power-module-design/ (accessed Jun. 2025).
    [6]A. Capaccio, “Insight of GaN and SiC Market,” EE Times. [Online]. Available: https://www.eetimes.com/insight-of-gan-and-sic-market/
    [7]Straits Research, “GaN Power Device Market,” [Online]. Available: https://straitsresearch.com/report/gan-power-device-market
    [8]Texas Instruments, “Wide-bandgap semiconductors: Performance and benefits of GaN versus SiC,”, Analog Design Journal, 2020. [Online]. Available: https://www.ti.com/lit/an/slyt801/slyt801.pdf?ts=1753990324352
    [9]U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs—An overview of device operation and applications,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002, doi: 10.1109/JPROC.2002.1021567.
    [10]Infineon Technologies, “GaN transistors (GaN HEMTs),” [Online]. Available: https://www.infineon.com/products/power/gallium-nitride/gallium-nitride-transistor
    [11]EPC Co., “Fourth Generation eGaN FETs Widen the Performance Gap with the Aging MOSFET,” Application Note, 2022. [Online]. Available: https://epc-co.com/epc/portals/0/epc/documents/product-training/AN017%20Fourth%20Generation%20eGaN%20FETs%20Widen%20the%20Performance%20Gap%20with%20the%20Aging%20MOSFET.pdf
    [12]A. Lidow, GaN Transistors for Efficient Power Conversion, 3rd ed. Hoboken, NJ, USA: Wiley, 2019.
    [13]X. Huang, Z. Liu, Q. Li, and F. C. Lee, “Evaluation and application of 600V GaN HEMT in cascode structure,” in Proc. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013, pp. 1279–1286, doi: 10.1109/APEC.2013.6520464.
    [14]Z. Liu, “Characterization and failure mode analysis of cascode GaN HEMT,” M.S. thesis, Dept. Elec. Eng., Virginia Tech, Blacksburg, VA, 2015.
    [15]Z. Liu, X. Huang, F. C. Lee, and Q. Li, “Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1977–1985, Apr. 2014, doi: 10.1109/TPEL.2013.2264941.
    [16]D. Reusch and J. Strydom, “Improving performance of high speed GaN transistors operating in parallel for high current applications, “ in Proc. PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2014, pp. 1–8.
    [17]J. L. Lu and D. Chen, “Paralleling GaN E-HEMTs in 10kW–100kW systems,” in Proc. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 2017, pp. 3049–3056, doi: 10.1109/APEC.2017.7931131.
    [18]Z. Wang, Y. Wu, J. Honea, and L. Zhou, “Paralleling GaN HEMTs for diode-free bridge power converters,” in Proc. 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 2015, pp. 752–758, doi: 10.1109/APEC.2015.7104434.
    [19]N. Chen, F. Chimento, M. Nawaz, and L. Wang, “Dynamic characterization of parallel-connected high-power IGBT modules,” 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 2013, pp. 4263–4269, doi: 10.1109/ECCE.2013.6647270.
    [20]T. Wickramasinghe, C. Buttay, C. Martin, H. Morel, P. Bevilacqua and T.-L. Le, “An investigation of current distribution over four GaN HEMTs in parallel configurations,” 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 2019, pp. 106–112, doi: 10.1109/WiPDA46397.2019.8998816.
    [21]T. Wickramasinghe, B. Allard, C. Buttay, C. Joubert, C. Martin and J.-F. Mogniotte, “A study on shunt resistor-based current measurements for fast switching GaN devices,” in Proc. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 1573–1578, doi: 10.1109/IECON.2019.8927490.
    [22]F. Luo, Z. Chen, L. Xue, P. Mattavelli, D. Boroyevich, and B. Hughes, “Design considerations for GaN HEMT multichip half-bridge module for high-frequency power converters,” in Proc. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA, 2014, pp. 537–544, doi: 10.1109/APEC.2014.6803361.
    [23]X. Zhang, N. Haryani, Z. Shen, R. Burgos, and D. Boroyevich, “Ultra-low inductance phase leg design for GaN-based three-phase motor drive systems,” 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2015, pp. 119–124, doi: 10.1109/WiPDA.2015.7369314.
    [24]G. Yadav and S. S. Nag, “Review of factors affecting current sharing and techniques for current balancing in paralleled wide bandgap devices,” in Proc. 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 2021, pp. 1–6, doi: 10.1109/ICEPE50861.2021.9404434.
    [25]J. Chen, X. Du, Q. Luo, X. Zhang, P. Sun, and L. Zhou, “A review of switching oscillations of wide bandgap semiconductor devices,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13182–13199, Dec. 2020, doi: 10.1109/TPEL.2020.2995778.
    [26]J. Lu, R. Hou, and D. Chen, “Loss distribution among paralleled GaN HEMTs,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 1914–1919, doi: 10.1109/ECCE.2018.8557988.
    [27]D. Reusch and J. Strydom, “Effectively paralleling gallium nitride transistors for high current and high frequency applications,” in Proc. 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 2015, pp. 745–751, doi: 10.1109/APEC.2015.7104433.
    [28]D. Han, A. Ogale, S. Li, Y. Li and B. Sarlioglu, “Efficiency characterization and thermal study of GaN based 1 kW inverter,” in Proc. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, USA, 2014, pp. 2344-2350, doi: 10.1109/APEC.2014.6803631.
    [29]K. Kumar, “Efficiency improvement of three phase traction inverter through GaN devices for PMSM,” in Proc. 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 2016, pp. 1-6, doi: 10.1109/PEDES.2016.7914359.
    [30]L. Kou, J. Lu and P. Di Maso, “GaN HEMT Outperforms Silicon in Low Frequency Applications,” 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 2019, pp. 255-260, doi: 10.1109/WiPDA46397.2019.8998762.
    [31]S. Musumeci, Fabio Mandrile, V. Barba, and M. Palma, “Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review,” Energies, vol. 14, no. 19, Oct. 2021, doi: https://doi.org/10.3390/en14196378.
    [32]D. Koch, J. Weimer, M. Weiser, J. Hueckelheim and I. Kallfass, “Gate Driver Concept for Parallel Operation of Low-Voltage High-Current GaN Power Transistors for Mild-Hybrid Applications,” in Proc. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021, pp. 1755-1760, doi: 10.1109/APEC42165.2021.9487194.
    [33]H. Sarnago, Ó. Lucía, I. O. Popa, and J. M. Burdío, “Constant-Current Gate Driver for GaN HEMTs Applied to Resonant Power Conversion,” Energies, vol. 14, no. 9, Apr. 2021, doi: https://doi.org/10.3390/en14092377.
    [34]M. T. Tran, D. D. Tran, K. Deepak, G. E. Martin, O. Bay and Mohamed El Baghdadi, “A High Performance GaN Power Module with Parallel Packaging for High Current and Low Voltage Traction Inverter Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 13, no. 1, pp. 1188-1209, Feb. 2025, doi: 10.1109/JESTPE.2024.3477743.
    [35]K. Beom, “High Efficiency GaN Power Converters,” PhD thesis, Dept. Elec. Eng., University of Sheffield, UK, 2020.
    [36]T. Ishibashi et al., “Experimental Validation of Normally-On GaN HEMT and Its Gate Drive Circuit,” IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2415–2422, May 2015, doi: https://doi.org/10.1109/TIA.2014.2369818.
    [37]X. Gao, A. Zhang, J. Huang, Z. Li, Y. Wang, and S. Lv, “Current Sharing Control and Influencing Factors for Parallel GaN FETs,” in Proc. 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 2024, pp. 1-5, doi: 10.1109/ICIEA61579.2024.10665281.
    [38]F. Stalleicken, S. Dieckerhoff, K. Handt and S. Nielebock, “Analysis of current sharing in the parallel connection of GaN transistors,” in Proc. 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), Hanover, Germany, 2022, pp. 1-11.
    [39]T. Wickramasinghc, B. Allard, R. Escofficr and M. Plissonnicr, “Electrical property variability of GaN transistors in parallel and their impact on fast switching operations,” in Proc. 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), Lyon, France, 2020, pp. P.1-P.9, doi: 10.23919/EPE20ECCEEurope43536.2020.9215684.
    [40]Infineon Technologies, “Paralleling MOSFETs in high-current LV drive applications,” Application Note, 2017.
    [41]ON Semiconductor, “AND90108-D: Paralleling Power MOSFETs,” Application Note, 2016.
    [42]Infineon Technologies, “Optimizing layout for paralleling power discrete semiconductor devices,” Application Note, 2017.
    [43]A. Fayyaz et al., “UIS failure mechanism of SiC power MOSFETs,” 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 2016, pp. 118-122, doi: 10.1109/WiPDA.2016.7799921.
    [44]P. Yan et al., “Multi-Bias Capacitance Voltage Characteristic of AlGaN/GaN HEMT,” Journal of Semiconductors, vol. 31, no. 10, 2010, doi: 10.1088/1674-4926/31/10/104002.
    [45]W-R Yang, “Parasitic Parameter Analysis of Permanent Magnet Synchronous Motor Drive Based on SiC Power Transistor, “ M.S. thesis, Dept. Elec. Eng., NCKU, Tainan, TW, 2020.
    [46]P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. G. Canavero and R. Achar, “Stability, Causality, and Passivity in Electrical Interconnect Models,” IEEE Transactions on Advanced Packaging, vol. 30, no. 4, pp. 795-808, Nov. 2007, doi: 10.1109/TADVP.2007.901567.
    [47]T. H. Nguyen, “Design of 10kW interior permanent magnet motor for EV traction”, M.S. thesis, Dept. Systems and Naval Mechatronic Eng., National Cheng Kung Univ., Tainan, Taiwan, 2016.
    [48]G. Zu et al., “Review of Pulse Test Setup for the Switching Characterization of GaN Power Devices,” IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3003-3013, June 2022, doi: 10.1109/TED.2022.3168238.
    [49]S. Musumeci, V. Barba, D. Jain, M. Pastorelli and M. Palma, “Parallel Connection Investigation of GaN FET Devices for High-Current Switches,” in Proc. 2024 AEIT International Annual Conference (AEIT), Trento, Italy, 2024, pp. 1-6, doi: 10.23919/AEIT63317.2024.10736824.
    [50]Y. Zhang, J. Li and J. Wang, “Investigations on Driver and Layout for Paralleled GaN HEMTs in Low Voltage Application,” IEEE Access, vol. 7, pp. 179134-179142, 2019, doi: 10.1109/ACCESS.2019.2957190.
    [51]Y. Hatakenaka, K. Umetani, M. Ishihara, E. Hiraki and H. Tadano, “Parasitic Inductance Design for Preventing Oscillatory False Triggering of Parallel-Connected GaN-FETs,” in Proc. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 2021, pp. 1-8, doi: 10.1109/IECON48115.2021.9589541.
    [52]Rohde & Schwarz, “HMF2525¸HMF2550 Arbitrary Function Generator”, Technical Data, December 2015.
    [53]Infineon Technologies, “GS61008P Bottom-side cooled 100 V E-mode GaN transistor”, Datasheet, 2020.
    [54]EPC Co., “EPC2032 Enhancement mode power transistor”, Datasheet, 2020.
    [55]Infineon Technologies, “IGC033S101 CoolGaN Transistor 100 V”, Datasheet, Revision 1.2, April 2025.
    [56]Nexperia, “GANE1R8-100QBA 100 V, 1.8 mOhm Gallium Nitride (GaN) FET in a 4.0 mm x 6.0 mm Very-Thin-Profile Quad Flat No-Lead Package (VQFN)”, Datasheet, March 2025.
    [57]SkyWorks, “Si827x 4 Amp ISOdriver with High Transient (dV/dt) Immunity”, Datasheet, April 2025.
    [58]Vishay General Semiconductor, “General Purpose Rectifier 1N4001”, Datasheet, April 2020.
    [59]ROHM, “SCS210AJ SiC Schottky Barrier Diode”, Datasheet, Revision 005, April 2023.

    無法下載圖示 校內:2027-08-27公開
    校外:2027-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE