簡易檢索 / 詳目顯示

研究生: 許哲榮
Hsu, Che-Jung,
論文名稱: 具供電彈性及模組化輸入電源能力之雙向諧振轉換器研製
Realization of Bi-Directional Resonant Converters with Flexible Supply and Modular Inputs
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 雙向電能傳輸模組化輸入擴充諧振轉換器
外文關鍵詞: Bi-Directional Power Transfer, Modular Inputs Expansion, Reconant Converter
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製具有供電彈性以及輸入電源模組化擴充之雙向電能傳輸架構,本研究乃是考量整合不同儲能裝置於微電網之應用,並輔以雙向電能傳輸技術及混合電源供應機制,使系統電能傳輸能力更具靈活性。本文提出雙向多輸入昇降壓轉換器,使輸入電源端具有模組化擴充之功能,且針對各電源模組規格進行獨立控制,並結合全橋換流器以及對稱式諧振架構,達成雙向電能傳輸功能,同時依據負載情境規劃系統電路運轉模式及挑選適當供電組合,俾以符合穩定供電需求。而為驗證本系統之實際應用可行性,本文經由電路實作及實測結果可知,本系統電路確已具有雙向電能傳輸能力,並且擁有輸入容量擴充功能,研製成果具有可行性與應用參考價值。

    This thesis is aimed to develop a bi-directional resonant converter with the flexible capability of supplying-power and modular expansion. By considering integrating different energy-storage for micro-grid applications, the study is focused on developing the bi-directional power transfer technique as well as hybrid power supply in anticipation of increasing the flexibility of power delivery. At the terminal of the input source of this proposed bi-directional multiple-input buck-boost converter, it presents the capability of modular expansion, through which each power module can be independently controlled. This converter is further combined with a full-bridge inverter and symmetrical resonance architecture so as to reach the requirements of bi-directional power delivery and determine different combinations of supplying-power under various load scenarios. To confirm the feasibility of this proposed system, the circuit is hardware-realized with measurements. Test results indicate that this proposed method exhibits the capability of bi-directional power delivery and modular expansion, which is of practical values for the application considered.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號目錄 XV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法及目標 2 1-3 內容大綱 4 第二章 多輸入轉換器與雙向電能傳輸架構分析 6 2-1 前言 6 2-2 雙向多輸入昇降壓轉換器 7 2-2-1 雙向多輸入轉換器之昇壓模式 8 2-2-2 雙向多輸入轉換器之降壓模式 9 2-3 換流器架構 11 2-3-1 全橋換流器 12 2-3-2 交錯式昇壓全橋換流器 13 2-4 諧振電路特性與整流濾波電路分析 15 2-4-1 諧振電路特性分析 15 2-4-2 整流濾波電路分析 21 2-5 諧振電路之運轉時序與控制方法 24 2-5-1 諧振電路之運轉時序 24 2-5-2 諧振電路之控制方法 41 第三章 系統軟硬體電路設計及規劃 42 3-1 前言 42 3-2 系統主電路架構設計 43 3-3 系統電路運轉模式規劃 47 3-3-1 主電源供電模式 47 3-3-2 主電源供電-儲能裝置充電模式 48 3-3-3 主電源與單儲能裝置混合供電模式 48 3-3-4 主電源與雙儲能裝置混合供電模式 49 3-3-5 雙儲能裝置共同供電模式 49 3-3-6 能量回收模式 50 3-4 變壓器設計 51 3-5 諧振電路參數設計 55 3-6 控制核心與功率開關驅動電路設計 63 3-6-1 微控制器簡介 64 3-6-2 功率開關驅動電路 64 第四章 系統實測結果 68 4-1 簡介 68 4-2 交錯式昇壓全橋換流器實測 69 4-3 諧振電路特性實測 73 4-3-1 諧振槽輸入阻抗特性實測 73 4-3-2 諧振槽增益測試 75 4-4 功率開關柔性切換功能測試 77 4-4-1 功率開關柔性切換測試-主電源供電模式 77 4-4-2 功率開關柔性切換測試-儲能裝置供電模式 80 4-4-3 功率開關柔性切換測試-能量回收模式 82 4-5 系統運轉模式功能測試 84 4-5-1 主電源供電模式實測 84 4-5-2 主電源供電-儲能裝置充電模式實測 86 4-5-3 主電源與儲能裝置混合供電模式實測 88 4-5-4 雙儲能裝置供電模式 93 4-5-5 負載能量回收模式 96 4-5-6 系統運轉效率實測 98 第五章 結論與未來研究方向 100 5-1 結論 100 5-2 未來研究方向 101 參考文獻 102

    [1] M. Das and V. Agarwal, “Design and Analysis of a High-Efficiency DC–DC Converter With Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 5, pp. 2936-2944, January 2016.
    [2] Y. Hu, W. Cao, S. J. Finney, W. Xiao, F. Zhang, and S. F. McLoone, “New Modular Structure DC–DC Converter Without Electrolytic Capacitors for Renewable Energy Applications,” IEEE Transactions on Sustainable Energy, Vol. 5, No. 4, pp. 1184-1192, August 2014.
    [3] V. Samavatian and A. Radan, “A High Efficiency Input/Output Magnetically Coupled Interleaved Buck–Boost Converter With Low Internal Oscillation for Fuel-Cell Applications: CCM Steady-State Analysis,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5560-5568, March 2015.
    [4] S. Sathyan, H. M. Suryawanshi, A. B. Shitole, M. S. Ballal, and V. B. Borghate, “Soft-Switched Interleaved DC/DC Converter as Front-End of Multi-Inverter Structure for Micro Grid Applications,” IEEE Transactions on Power Electronics, Vol. 33, No. 9, pp. 7645-7655, September 2018.
    [5] J. Yang, J. Liu, Z. Fang, and W. Liu, “Electricity scheduling strategy for home energy management system with renewable energy and battery storage: a case study,” IET Renewable Power Generation, Vol. 12, No. 6, pp. 639-648, April 2018.
    [6] N. Eghtedarpour and E. Farjah, “Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid,” IET Renewable Power Generation, Vol. 8, No. 1, pp. 45-57, January 2014.
    [7] N. Liu, Q. Chen, X. Lu, J. Liu, and J. Zhang, “A Charging Strategy for PV-Based Battery Switch Stations Considering Service Availability and Self-Consumption of PV Energy,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, pp. 4878-7889, February 2015.
    [8] L. Wang, C. S. Lam, and M. C. Wong, “Analysis, Control, and Design of a Hybrid Grid-Connected Inverter for Renewable Energy Generation With Power Quality Conditioning,” IEEE Transactions on Power Electronics, Vol. 33, No. 8, pp. 6755-6768, September 2017.
    [9] L. Hadjidemetriou, E. Kyriakides, and F. Blaabjerg, “A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, pp. 4858-4868, February 2015.
    [10] H. Wu, S. Ding, K. Sun, L. Zhang, Y. Li, and Y. Xing, “Bidirectional Soft-Switching Series-Resonant Converter With Simple PWM Control and Load-Independent Voltage-Gain Characteristics for Energy Storage System in DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 3, pp. 995-1007, January 2017.
    [11] Y. Lu, Q. Wu, Q. Wang, D. Liu, and L. Xiao, “Analysis of a Novel Zero-Voltage-Switching Bidirectional DC/DC Converter for Energy Storage System,” IEEE Transactions on Power Electronics, Vol. 33, No. 4, pp. 3169-3179, May 2017.
    [12] P. He and A. Khaligh, “Comprehensive Analyses and Comparison of 1 kW Isolated DC–DC Converters for Bidirectional EV Charging Systems,” IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, pp. 147-156, November 2016.
    [13] L. Zhao, D. J. Thrimawithana, and U. K. Madawala, “Hybrid Bidirectional Wireless EV Charging System Tolerant to Pad Misalignment,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 9, pp. 7079-7086, March 2017.

    [14] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM Drive Powered by Battery/Supercapacitor With G2V and V2H/V2G Capabilities,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, pp. 4714-4727, January 2015.
    [15] F. Kardan, R. Alizadeh, M. R. Banaei, “A New Three Input DC/DC Converter for Hybrid PV/FC/Battery Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 4, pp. 1771-1778, July 2017.
    [16] B. Mangu, S. Akshatha, D. Suryanarayana, B. G. Fernandes, “Grid-Connected PV-Wind-Battery-Based Multi-Input Transformer-Coupled Bidirectional DC-DC Converter for Household Applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 3, pp. 1076-1095, March 2016.
    [17] S. Danyali, S. H. Hosseini, and G. B. Gharehpetian, “New Extendable Single-Stage Multi-input DC–DC/AC Boost Converter,” IEEE Transactions on Power Electronics, Vol. 29, No. 2, pp. 775-788, April 2013.
    [18] F. Akar, Y. Tavlasoglu, and B. Vural, “Analysis and experimental verification of a multi-input converter for DC microgrid applications,” IET Power Electronics, Vol. 11, No. 6, pp. 1009-1017, May 2018.
    [19] V. Karthikeyan and Rajesh Gupta, “Multiple-Input Configuration of Isolated Bidirectional DC–DC Converter for Power Flow Control in Combinational Battery Storage,” IEEE Transactions on Industrial Informatics, Vol. 14, No. 1, pp. 2-11, May 2017.
    [20] M. Jabbari and M. S. Dorcheh, “Resonant Multi-input/Multi-output/Bidirectional ZCS Step-Down DC–DC Converter With Systematic Synthesis for Point-to-Point Power Routing,” IEEE Transactions on Power Electronics, Vol. 33, No. 7, pp. 6024-6032, September 2017.
    [21] F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy, “A Bidirectional Nonisolated Multi-Input DC–DC Converter for Hybrid Energy Storage Systems in Electric Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 10, pp. 7944-7955, November 2015.
    [22] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications—Polynomial Control Strategy,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 2, pp. 587-597, June 2009.
    [23] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” IEEE Energy Conversion Congress and Exposition, pp. 553-560, Phoenix, USA, September 2011.
    [24] M. Uno and A. Kukita, “Bidirectional PWM Converter Integrating Cell Voltage Equalizer Using Series-Resonant Voltage Multiplier for Series-Connected Energy Storage Cells,” IEEE Transactions on Power Electronics, Vol. 30, No. 6, pp. 3077-3090, June 2014.
    [25] U. Kundu, B. Pant, S. Sikder, A. Kumar, P. Sensarma, “Frequency Domain Analysis and Optimal Design of Isolated Bidirectional Series Resonant Converter,” IEEE Transactions on Industry Applications, Vol. 54, No. 1, pp. 356-366, October 2017.
    [26] S. Zong, H. Luo, W. Li, Y. Deng, and X. He, “High-power bidirectional resonant DC–DC converter with equivalent switching frequency doubler,” IET Renewable Power Generation , Vol. 10, No. 6, pp. 834-842, June 2016.
    [27] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications,” IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, pp. 232-244, September 2015.
    [28] H. Wang, S. Dusmez, and A. Khaligh, “Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through Variable DC Link Control,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 6041-6049, March 2014.
    [29] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Transactions on Vehicular Technology, Vol. 63, No. 4, pp. 1581-1592, October 2013.
    [30] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-Directional CLLC Converter With Synchronous Rectification for Plug-In Electric Vehicles,” IEEE Transactions on Industry Applications, Vol. 54, No. 2, pp. 998-1005, November 2017.
    [31] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1741-1755, August 2012.
    [32] X. Lu and H. Wang, “Three-port Bidirectional CLLC Resonant Converter Based Onboard Charger for PEV Hybrid Energy Management System,” IEEE Energy Conversion Congress and Exposition, pp. 1432-1438, Cincinnati, USA, November 2017.
    [33] G. P. Adam and B. W. Williams, “Half- and Full-Bridge Modular Multilevel Converter Models for Simulations of Full-Scale HVDC Links and Multiterminal DC Grids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 2, No. 4, pp. 1089-1108, April 2012.
    [34] J. B. Lee, J. K. Kim, J. H. Kim, J. I. Baek, and G. W. Moon, “A High-Efficiency PFM Half-Bridge Converter Utilizing a Half-Bridge LLC Converter Under Light Load Conditions,” IEEE Transactions on Power Electronics, Vol. 30, No. 9, pp. 4931-4942, October 2014.
    [35] H. P. Park and J. H. Jung, “PWM and PFM Hybrid Control Method for LLC Resonant Converters in High Switching Frequency Operation,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, pp. 253-263, August 2016.
    [36] “Soft Ferrites and Accessories Data Handbook,” Ferroxcube, Yageo Company, 2013.
    [37] “Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors,” ASTM International, 2014.
    [38] MT4090 LCR Meter, MOTECH Industries Incorporated, 2008.
    [39] PIC24FJ256GB110 Family Data Sheet, Microchip Technology Incorporated, 2009.
    [40] SCT2080KE Data Sheet, ROHM Semiconductor, 2015.
    [41] HCPL-3120 Data Sheet, Avago Technologies, 2016.

    無法下載圖示 校內:2023-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE