| 研究生: |
葉彥廷 Ye, Yan-Ting |
|---|---|
| 論文名稱: |
改良線性倒單擺模型之中型人形機器人步態產生器之設計與實現 Design and Implementation of Gait Pattern Generation by Improved Linear Inverted Pendulum Model for Teen-Sized Humanoid Robot |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 線性倒單擺模型 、人形機器人 、雙足步行 |
| 外文關鍵詞: | linear inverted pendulum model, humanoid robots, biped walkin |
| 相關次數: | 點閱:131 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在中型人形機器人David Junior之研製與其穩定步態之實現。首先,介紹機器人的系統架構與改良的機構設計概念,並應用線性倒單擺模型(LIPM)於步態產生器。由於傳統線性倒單擺模型必須假設機器人上半身之質量遠大於雙腳之質量,進而在推導機器人模型過程中忽略雙腳之質量以簡化模型,但此一假設與目前大多數人形機器人之身體質量分佈有所牴觸。故本論文提出一改良型線性倒單擺模型,將雙腳之質量也加入模型計算,如此一來更符合實際的情況。此外,機器人行走時的腳掌傾斜幅度能夠顯著地影響步態的穩定性,因此本論文將以訓練的方式決定適當的腳掌傾斜角度以產生較為穩定的步態。最後,為了克服地形的不平坦以及環境擾動的影響所造成的不穩定因素,參考加速度計之數值回授實現了即時的步態閉迴路控制,提昇機器人的步態強健性。實驗結果顯示將此改良型線性倒單擺模型實際運用於中人形機器人中,其行走速度可以達到17.4cm/s,相較上一代之大型人形機器人進步了約2.4倍。David Junior於2014 FIRA RoboWorld Cup競賽之HuroCup Adult-Sized組獲得競賽總冠軍的佳績。
Design of a teen-sized humanoid robot David Junior and its stable gait pattern generation are proposed in this thesis. First, the system architecture and the design concept of enhanced mechanism are introduced. Second, the Linear Inverted Pendulum Model (LIPM) theory is used for gait pattern generation. Conventional LIPM is assumed that the mass of legs should be much less than the mass of the upper body, the mass of legs is neglected to simplify the model. However, it causes the conflict between LIPM and real models of most current humanoid robots. Hence, this thesis proposes an improved LIPM, and the mass of legs can be included in the model. Therefore, the improved LIPM is more suitable for real situation and application. Third, a training process is utilized to learn a suitable pose of supporting sole, which seriously affects the stability of gait pattern, for stable walking. Finally, acceleration feedback is adopted to overcome the uncertainty factors such as uneven terrain and environment disturbance which cause unstable phenomenon. This real-time closed-loop control increases the robustness of gait pattern. Experimental results demonstrate that the walking speed of David Junior with improved LIPM can achieve 17.4cm/s, and it is 2.4 times faster than previous generation adult-sized robot. Furthermore, David Junior won the all-round championship in Adult-sized HuroCup category of 2014 FIRA RoboWorld Cup.
[1] SONY, http://www.sony.net/
[2] Robi, http://www.hellorobi.co.uk/
[3] DARwIn-OP, http://www.robotis.com/xe/darwin_en/
[4] Y. Choi, B. -J. You and S. -R. Oh, “On the stability of indirect ZMP controller for biped robot systems,” in Proc. IEEE Int. Conf. Robots and Systems, Sendal, Japan, Jun. 2004, vol. 2, pp. 1966-1971.
[5] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “Dynamics and balance of a humanoid robot during manipulation tasks,” IEEE Trans. Robotics, vol. 22, no. 3, pp. 568-575, Jun. 2006.
[6] S. Kajita, T. Nagasaki, K. Kaneko, and H. Hirukawa, “ZMP-based biped running control,” IEEE Trans. Robotics, vol. 14, no. 2, pp. 63-72, Jun. 2007.
[7] E. Ohashi, T. Aiko, T. Tsuji, H. Nishi, and K. Ohnishi, “Collision avoidance method of humanoid robot with arm force,” IEEE Trans. Industrial Electronics, vol. 54, no. 3, pp. 1632-1641, Jun. 2007.
[8] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Industrial Electronics, vol. 55, no. 5, pp. 2111-2120, May. 2008.
[9] K. Erbatur and O. Kurt, “Natural ZMP trajectories for biped robot reference generation,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 835-845, Mar. 2009.
[10] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 5, pp. 638-648, Sep. 2004.
[11] C. Liu, D. Wang and Q. Chen, “Central pattern generator inspired control for adaptive walking of biped robots,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1206-1215, Sep. 2013.
[12] S. Inagaki, H. Yuasa, T. Suzuki and T. Arai, “Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control,” Robotics and Autonomous System, vol. 54, no. 2, pp. 118-126, Feb. 2006.
[13] J. Or, “A hybrid CPG–ZMP controller for the real-time balance of a simulated flexible spine humanoid robot,” IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and reviews, vol. 39, no. 5, pp. 547-560, Sep. 2009.
[14] T. Bliss, J. Werly, T. Iwasaki and H. Bart-Smith, “Experimental validation of robust resonance entrainment for CPG-controlled tensegrity structures,” IEEE Trans. Control Systems Technology, vol. 21, no. 3, pp. 666-678, May. 2013.
[15] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi and G. Cheng, “Learning CPG-based biped locomotion with a policy gradient method: application to a humanoid robot,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 213-228, Feb. 2008.
[16] S. Kajita, F. Kanehiro, K. Kando, K. Yokoi and H. Hirukawa, “The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems, 2001, vol. 1, pp. 239-246.
[17] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating pathological gait using the enhanced linear inverted pendulum model,” IEEE Trans. Biomedical Engineering, vol. 52, no. 9, pp. 1502-1513, Sep. 2005.
[18] S. Kajita, T. Nagasaki, K. Kaneko and H. Hirukawa, “ZMP-Based biped running control,” IEEE Robotics & Automation Magazine, vol. 14 no.2 pp. 63-72, Jun. 2007.
[19] FIRA, http://www.fira.net/
[20] RoboCup, http://www.robocup.org/
[21] RoboCup HumanoidLeadgeRulse2014, http://www.informatik.uni-bremen.de/huma
noid/pub/Website/Downloads/HumanoidLeagueRules2014-07-05.pdf
[22] Axiomtek, http://www.axiomtek.com.tw/
[23] STM32-F103ZET6, http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031
[24] ROBOTIS, http://www.robotis.com/
[25] Arduino Mega, http://arduino.cc/en/Main/ArduinoBoardMega
[26] Arduino Due, http://arduino.cc/en/Main/ArduinoBoardDue
[27] P. -C. Huang, Design and Implementation of a Series of Small-sized Humanoid Robots, Master Thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2011.
[28] ROBOTIS ZIG-100,
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
[29] Tekscan, http://www.tekscan.com/
[30] DMP, http://ww.dmp.com.tw/
[31] Microsoft Windows, http://windows.microsoft.com/zh-tw/windows/products
[32] Logitech Webcams,
http://www.logitech.com/zh-tw/webcam-communications/webcams
[33] Kewele International, http://www.evcbattery.com/product_cg22956.html
[34] K. A. Stroud and Dexter J. Booth, Engineering Mathematics, 6th ed. Palgrave Macmillan, Jan. 2007.
[35] R. W. Hamming, “Lanczos’ σ factors” and “The σ factors in the general case,” §32.6 and 32.7,” in Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, 1986, pp. 534–536.
[36] K. Harada, K. Miura, M. Morisawa, K. Kaneko, S. Nakaoka, F. Kanehiro, T. Tsuji and S. Kajita, “Toward human-like walking pattern generator,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, USA, Oct. 2009, pp. 1071-1077.
[37] J. Han, Bipedal Walking for a Full-sized Humanoid Robot Utilizing Sinusoidal Feet Trajectories and Its Energy Consumption, Doctor Thesis, Department of Philosophy In Mechanical Engineering, Virginia Polytechnic Institute and State University, Apr. 2012.
[38] S. R. Buss and J. -S. Kim, Selectively damped least squares for inverse kinematics. Typeset manuscript, April 2004. Draft available at http:/math.ucsd.edu/~sbuss/ResearchWeb. Submitted for publication.
[39] K. Y. Chong, Design and implementation of fuzzy policy gradient gait learning method for humanoid robot, Master Thesis, Department of Electrical Engineering, National Cheng Kung University, July 2010.
[40] R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and resources,” in Proc. IEEE Evolutionary Computation Conf. vol. 1, Seoul, Korea, May. 2001, pp. 81-86.
[41] J. -H. Seo, C. -H. Im, C. -G. Heo, J. -K. Kim, H. -K. Jung and C. -G. Lee, “Multimodal function optimization based on particle swarm optimization,” IEEE Trans. Magnetics, vol. 42, no. 4, pp. 1095-1098, Apr. 2006.
[42] Z. -H. Zhan, J. Zhang, Y. Li and Y. -H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Trans. Evolutionary Computation, vol. 15, no. 6, pp. 832-847, Dec. 2011.