研究生: |
陳慶昌 Chen, Ching-Chang |
---|---|
論文名稱: |
數位消費性電子裝置之光學穩定器與投影失真校正器設計與實現 Design and Implementation of Optical Image Stabilizer and Keystone Corrector for Digital Consumer Electronic Devices |
指導教授: |
李祖聖
Lee, Tzuu-Hseng |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 107 |
中文關鍵詞: | 光學防手振 、投影失真補償校正 、模糊滑動模式控制器 、擴展卡曼濾波器 、投影機相機模組 、預扭曲 |
外文關鍵詞: | Optical image stabilizer, Keystone correction, Fuzzy sliding-mode controller, Extended Kalman filter, Projector-camera pair, Pre-warping |
相關次數: | 點閱:160 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討數位消費性電子裝置,其一為感測器移動式光學影像防手振系統;另一為自動投影扭曲失真補償系統。一般而言,精準的手振動訊號估測與控制器表現都是影響防手振效果的重要因素,本文提出頻率適應光學防手振系統,利用模糊滑動模式控制器來補償音圈馬達的非線性與穩定雙軸防手振模組, 模糊滑動模式控制器對於重力變化大的系統仍有好的強健性,擴展卡曼濾波器設計以即時估測手振動頻率與線上調整手振感測器的參數,模糊擴展卡曼濾波器設計以改善手振感測器的穩定時間,透過相位偏移與穩定時間的改善以擴展防手振系統頻寬與時變手振動下的防手振效能。此外,自動投影扭曲失真補償系統利用投影機相機模組提供影像回授,以監控投影的幾何扭曲,特徵淬取器與投影傾斜分類器設計以計算投影機與投影幕之間的傾斜角度,透過影像預扭曲來補償因非正常投影姿態造成投影上的幾何扭曲。最後,本論文發展的頻率適應性光學防手振系統透過時變的防手振實驗驗證其防手振效果與頻率適應性;所有行動投影實驗驗證自動投影扭曲失真補償系統的效果不受z軸旋轉影響。
This dissertation discusses the digital consumer electronic devices, and presents the sensor-shift optical image stabilizer (OIS) system and the automatic keystone correction (AKC) system. In general, the precise estimation of the hand-shake vibration and controller performance are the most crucial factors of the stabilization performance. This dissertation proposes a frequency adaptive OIS (FAOIS) system which utilizes a fuzzy sliding-mode controller (FSMC) to compensate the nonlinearities of voice coil motor (VCM) and stabilize the dual-axis OIS module. The FSMC does have good robustness while the system has large gravity fluctuation in vertical axis. An extended Kalman filter (EKF) is designed to estimate the tremor frequency in real-time and tune the hand-shake detector online. A fuzzy EKF (FEKF) is used to improve the settling-time of the EKF-based hand-shake detector. The bandwidth of the OIS system with time-varying hand tremor is expended by improving the phase-shift phenomenon and the settling-time of the hand-shake detector. Furthermore, the AKC system adopts the projector-camera pair to provide a visual feedback for monitoring the keystone distortion, a feature extractor and an inclination classifier to determine the projection inclination between the projector and the projection screen, and a pre-warping process to compensate the keystone distortion, caused by non-normal projection poses. Finally, the stabilization performance and frequency adaption of the FAOIS are illustrated by OIS experiments with time-varying hand tremor. All the mobile projection experiments demonstrate that z-axis rotation does not affect the proposed AKC system.
[1] A. Amanatiadis and I. Andreadis, “An integrated architecture for adaptive image stabilization in zooming operation,” IEEE Trans. Consum. Electron., vol. 54, no. 2, pp. 600-608, May 2008.
[2] J. Ali, “Strapdown inertial navigation system/astronavigation system data synthesis using innovation-based fuzzy adaptive Kalman filtering,” IET Sci. Meas. Technol., vol. 4, no. 5, pp. 246-255, Sep. 2010.
[3] S. C. Abraham, M. R. Thomas, R. Basheer, and P.R. Anurenjan, “A novel approach for video stabilization,” in Proceedings of the IEEE Int. Conf. Recent Advances in Intelligent Computational Systems (RAICS), 22-24 Sep. 20011, Trivandrum, pp. 134-137.
[4] C. M. N. Brigante, N. Abbate, A. Basile, A. C. Faulisi, and S. Sessa, “Towards miniaturization of a MEMS-based wearable motion capture system,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3234-3241, Aug. 2011.
[5] S. Bittanti and S. M. Savaresi, “Design of an extended Kalman filter frequency tracker,” IEEE Trans. Signal Process., vol. 44, no. 3, pp. 739-742, Mar. 1996.
[6] A. C. Charalampidis and G. P. Papavassilopoulos, “Development and numerical investigation of new non-linear Kalman filter variants,” IET Contr. Theo. & Appl., vol. 5, no. 10, pp. 1155-1166, Aug. 2011.
[7] B. Cardani, “Optical image stabilization for digital cameras,” IEEE Trans. Contr. Syst., vol. 26, no. 2, pp. 21–22, Apr. 2006.
[8] B. D. Choi, I. S. Park, J. S. Kim, S. J. Lee, and B. S. Bae, “Image quality enhancement in AMOLED microdisplay for mobile projectors,” IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 313-319, May 2011.
[9] D. Chen, J. Zhang, and Z. Qian, “An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability,” IEEE Trans. Ind. Electron., vol. 27, no. 5, pp. 2396-2404, May 2012.
[10] H. J. Chang, P. J. Kim, D. S. Song, and J. Y. Choi, “Optical image stabilizing system using multi-rate fuzzy PID controller for mobile device camera,” IEEE Trans. Consumer Electron., vol. 55, no. 2, pp. 303-311, May 2009.
[11] I. Carugati, P. Donato, S. Maestri, D. Carrica, and M. Benedetti, “Frequency adaptive PLL for polluted single-phase grids,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 814-823, Feb. 2013.
[12] J. Y. Cho and K. S. Kim, “Nonlinear sliding surface design for optical image stabilizer of digital camera,” in Proc. ICCAS 10th Int. Conf. Control. Autom. and Syst., Gyeonggi-do, Korea, 20-30 Oct. 2010, pp. 2402-2403.
[13] S. Y. Chen, “Kalman filter for robot vision: a survey,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4409-4420, Nov. 2012.
[14] P. K. Dash, S. Hasan, and B. K. Panigrahi, “Adaptive complex unscented Kalman filter for frequency estimation of time-varying signals,” IET Sci. Meas. & Technol., vol. 4, no. 2, pp. 93-103, Mar. 2010.
[15] S. Ertürk, “Image sequence stabilisation based on Kalman filtering of frame positions,” Electron. Lett., vol. 37, no. 20, pp. 1217-1219, Sep. 2001.
[16] S. Ertürk, “Translation, rotation and scale stabilisation of image sequences,” Electron. Lett., vol. 39, no. 17, pp. 1245-1246, Aug. 2003.
[17] S. Ertürk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1320-1325, Nov. 2003.
[18] A. Grundhofer and O. Bimber, “Real-time adaptive radiometric compensation,” IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 1, pp. 97-108, Jan. 2008.
[19] F. Gavant, L. Alacoque, A. Dupret, and D. David, “A physiological camera shake model for image stabilization systems,” in Proc. IEEE Int. Conf. Sensors, Limerick, USA, 28-31 Oct. 2011, pp. 1461-1464.
[20] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, “Low-cost three-dimensional navigation solution for RISS/GPS integration using mixture particle filter,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 599-615, Feb. 2010.
[21] M. K. Gullu, E. Yaman, and S. Ertürk, “Image sequence stabilization using fuzzy adaptive Kalman filtering,” Electron. Lett., vol. 39, no. 5, pp. 429-431, Mar. 2003.
[22] M. K. Gullu and S. Ertürk, “Membership function adaptive fuzzy filter for image sequence stabilization,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 1-7, Feb. 2004.
[23] X. Gao, D. You, and S. Katayama, “Seam tracking monitoring based on adaptive Kalman filter embedded elman neural network during high-power fiber laser welding,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4315-4325, Nov. 2012.
[24] K. Hiroya, T. Yukitaka, and S. Takeshi, “Control system for optical image stabilization,” Journal of the Institute of Image Information and Television Engineers, vol. 56, no. 3, pp. 411-416. Mar. 2002.
[25] L. Hsu, R. Ortega, and G. Damm, “A globally convergent frequency estimator,” IEEE Trans. Autom. Contr., vol. 44, no. 4, pp. 698-713, Apr. 1999.
[26] S. Hara, T. Iwasaki, and D. Shiokata, “Robust PID control using generalized KYP synthesis direct open-loop shaping in multiple frequency ranges,” IEEE Trans. Contr. Syst., vol. 26, no. 1, pp. 80-91, Feb. 2006.
[27] K. Kim and J. Cho, “Clipping error rate-adaptive color compensation based on gamut extension for a low-performance camera in a projector-camera system,” IEEE Trans. Consum. Electron., vol. 57, no. 3, pp. 1010-1017, Aug. 2011.
[28] S. J. Ko, S. H. Lee, S. W. Jeon, and E. S. Kang, “Fast digital image stabilizer based on Gray-coded bit-plane matching,” IEEE Trans. Consum. Electron., vol. 45, no. 3, pp. 598-603, Aug. 1999.
[29] S. K. Kim, S. J. Kang, T. S. Wang, and S. J. Ko, “Feature point classification based global motion estimation for video stabilization,” IEEE Trans. Consumer Electronics, vol. 59, no. 1, pp. 267-272, Feb. 2013.
[30] T. Kinugasa, N. Yamamoto, H. Komatsu, S. Takase, and T. Imaide, “Electronic image stabilizer for video camera use,” IEEE Trans. Consum. Electron., vol. 36, no. 3, pp. 520-525, Aug. 1990.
[31] B. Li and I. Sezan, “Automatic keystone correction for smart projectors with embedded camera,” in Proc. IEEE Int. Conf. Image Processing, Singapore, 24-27 Oct. 2004, vol. 4, pp. 2829-2832.
[32] B. Lee, W. C. Bang, J. D. K. Kim, and C. Y. Kim, “Orientation estimation in mobile virtual environments with inertial sensors,” IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 802-810, May 2011.
[33] F. Liu, Y. Niu, and H. Jin, “Keystone correction for stereoscopic cinematography,” in Proc. IEEE Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, Rhode Island, USA, 16-21 Jun. 2012, pp. 1-7.
[34] F. J. Lin, D. H. Wang, and P. K. Huang, “FPGA-based fuzzy sliding mode control for a linear induction motor drive,” Proc. IEEE Electr. Power Appl., vol. 152, no. 5, pp. 1137-1148, Sep. 2005.
[35] J. K. Lee and E. J. Park, “Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation,” IEEE Trans. Robot., vol. 25, no. 5, pp. 1196-1201, Oct. 2009.
[36] M. H. Lee, H. Park, and J. I. Park, “Fast radiometric compensation accomplished by eliminating color mixing between projector and camera,” IEEE Trans. Consum. Electron., vol. 54, no. 3, pp. 987-991, Aug. 2008.
[37] S. Li and X. Kang, “Fast multi-exposure image fusion with median filter and recursive filter,” IEEE Trans. Consumer Electronics, vol. 58, no. 2, pp. 626-632, May 2012.
[38] T. H. S. Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, no. 1-2, pp. 91-109, Mar. 2000.
[39] T. H. S. Li and S J Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Systems, Man, and Cybernetics – Part A: Systems and Humans, vol. 33, no. 4, pp. 451-465, Jul. 2003.
[40] T. H. S. Li, S. J. Chang, and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,“ IEEE Trans. Fuzzy Systems, vol. 12, no. 4, pp. 491-501, Aug. 2004.
[41] T. H. S. Li, Y. C. Yeh, J. D. Wu, M. Y. Hsiao, and C. Y. Chen, “Multifunctional intelligent autonomous parking controllers for carlike mobile robots,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1687-1700, May 2010.
[42] T. H.S. Li, C. C. Chen, and Y. T. Su, “Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras,” IEEE Trans. Consum. Electron., vol. 58, no. 2, pp. 237–245, May 2012.
[43] T. H. S. Li, Y. T. Su, S. H. Liu, J. J. Hu, and C. C. Chen, “Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4394-4408, Nov. 2012.
[44] T. H. S. Li and C. C. Chen, “Extended Kalman filter based hand-shake detector for optical image stabilization using a low cost gyroscope,” IEEE Trans. Consum. Electron., vol. 59, no. 1, pp. 113-121, Feb. 2013.
[45] W. T. Latt, U. X. Tan, K. C. Veluvolu, C. Y. Shee, and W. T. Ang, “Physiological tremor sensing using only accelerometers for real-time compensation,” in Proc. ROBIO’2008 IEEE Int. Conf. Robo. and Biomimetics, Bangkok, Thai., 22-25 Feb. 2009, pp. 474-479.
[46] Z. Li, K. H. Wong, Y. Gong, K. K. Lee, and M. Y. Chang, “A keystone-free hand-held mobile projection system,” in Proc. IEEE Int. Conf. Image Processing, Hong Kong, China, 26-29 Sep. 2010, pp. 553-556.
[47] Z. Li, K. H. Wong, Y. Gong, and M. Y. Chang, “An effective method for movable projector keystone correction,” IEEE Trans. Multimedia., vol. 13, no. 1, pp. 155-160, Feb. 2011.
[48] C. Morimoto and R. Chellappa, “Fast electronic digital image stabilization for off-road navigation,” Real-Time Imaging, vol. 2, no. 5, pp. 285-296, Oct. 1996.
[49] H. G. Marina, F. J. Pereda, J. M. Giron-Sierra, and F. Espinosa, “UAV attitude estimation using unscented Kalman filter and TRIAD,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4465-4474, Nov. 2012.
[50] J. H. Moon and S. Y. Jung, “Implementation of an image stabilization system for a small digital camera,” IEEE Trans. Consum. Electron., vol. 54, no. 2, pp. 206-212, May 2008.
[51] E. Ohara, K. Yano, S. Horihata, T. Aoki, and Y. Nishimoto, “Development of tremor-suppression filter for meal-assist robot,” in Proc. EuroHaptics conf. and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Syst., Salt Lake City, UT, USA, 18-20 Mar. 2009, pp. 238-243.
[52] E. M. Or and D. Pundik, “Hand motion and image stabilization in hand-held devices,” IEEE Trans. Consum. Electron., vol. 53, no. 4, pp. 1508-1512, Nov. 2007.
[53] M. Oshima, T. Hayashi, S. Fujioka, T. Inaji, H. Mitani, J. Kajino, K. Ikeda, and K. Komoda, “VHS camcorder with electronic image stabilizer,” IEEE Trans. Consum. Electron., vol. 35, no. 4, pp. 749-758, Nov. 1989.
[54] H. Park, M. H. Lee, B. K. Seo, J. I. Park, M. S. Jeong, T. S. Park, Y. B. Lee, and S. R. Kim, “Simultaneous geometric and radiometric adaptation to dynamic surfaces with a mobile projector-camera system,” IEEE Trans. Circuits and Syst. for Video Technol., vol. 18, no. 1, pp. 110-115, Jan. 2008.
[55] R. Palm, “Robust control by fuzzy sliding mode,” Automatica, vol. 30, no. 9, pp. 1429-1437, Sep. 1994.
[56] Z. Pan, and C. W. Ngo, “Selective object stabilization for home video consumers,” IEEE Trans. Consum. Electron., vol. 51, no. 4, pp. 1074-1084, Nov. 2005.
[57] B. W. Robinson, D. Hernandez-Garduno, and M. Saquib, “Fixed and floating point analysis of linear predictors for physiological hand tremor in microsurgery,” in Proc. ICASSP 2010 IEEE Int. Conf. Acoustics, Speech, and Signal Process., Dallas, TX, USA, 14-19 Mar. 2010, pp. 578-581.
[58] C. N. Riviere, R. S. Rader, and N. V. Thakor, “Adaptive cancelling of physiological tremor for improved precision in microsurgery,” IEEE Trans. Biomed. Eng., vol. 45, no. 7, pp. 839-846, Jul. 1998.
[59] P. K. Ray and B. Subudhi, “Ensemble-Kalman-filter-based power system harmonic estimation,” IEEE Trans. Instrum. and Meas., vol. 61, no. 12, pp. 3216-3224, Dec. 2012.
[60] R. Raskar and P. Beardsley, “A self-correcting projector,” in Int. Conf. on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8-14 Dec. 2001, vol. 2, pp. 504-508.
[61] Y. G. Ryu and M. J. Chung, “Robust online digital image stabilization based on point-feature trajectory without accumulative global motion estimation,” IEEE Trans. Signal Process. Lett., vol. 19, no. 4, pp. 223-226, Aug. 2012.
[62] B. F. L. Scala, R. R. Bitmead, and B. G. Quinn, “An extended Kalman filter frequency tracker for high-noise environments,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 431-434, Feb. 1996.
[63] B. F. L. Scala and R. R. Bitmead, “On the parameterization and design of an extended Kalman filter frequency tracker,” IEEE Trans. Autom. Contr., vol. 45, no. 9, pp. 1718-1724, Sep. 2000.
[64] C. Song, H. Zhao, W. Jing, and H. Zhu, “Robust video stabilization based on particle filtering with weighted feature points,” IEEE Trans. Consum. Electron., vol. 58, no. 2, pp. 570-577, May 2012.
[65] D. Simon, “Kalman filtering with state constraints: a survey of linear and nonlinear algorithms,” IET Contr. Theo. Appl., vol. 4, no. 8, pp. 1303-1318, Aug. 2010.
[66] I. Sadinezhad and V. G. Agelidis, “Frequency adaptive least-squares-Kalman technique for real-time voltage envelope and flicker estimation,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3330-3341, Aug. 2010.
[67] K. Sato, S. Ishizuka, A. Nikami, and M. Sato, “Control techniques for optical image stabilizing system,” IEEE Trans. Consum. Electron., vol. 39, no. 3, pp. 461-466, Aug. 1993.
[68] M. G. Song, Y. J. Hur, N. C. Park, K. S. Park, Y. P. Park, S. C. Lim, and J. H. Park, “Design of a voice-coil actuator for optical stabilization based on genetic algorithm,” IEEE Trans. Magnetics, vol. 45, no. 10, pp. 4558-4561, Oct. 2009.
[69] Y. Y. Shih, S. F. Su, and I. Rudas, “Fuzzy based hand-shake compensation for image stabilization,” in Proc. ICSSE 2012 Int. Conf. Syst., Sci. and Eng., Dalian, China, 30 Jun. 2012, pp. 40-44.
[70] K. Tsunashima, T. Shida, H. Kawano, T. Sato, and H. Kosaka, “Compact programmable network display system for portable projectors,” IEEE Trans. Consum. Electronics, vol. 55, no. 2, pp. 312-315, May 2009.
[71] S. Tatinati, K. C. Veluvolu, and W. T. Ang, “Autoregressive model with Kalman filter for estimation of physiological tremor in surgical robotic applications,” in Proc. ICCAS 11th Int. Conf. Contr., Autom. and Syst., Gyeonggi-do, Korea, 16-29 Oct. 2011, pp. 454-459.
[72] S. G. Tzafestaz and G. G. Rigatos, “A simple robust sliding-mode fuzzy logic controller of the diagonal type,” J. Intelligent and Robot. Syst.: Theo. and Appl., vol. 26, no. 3, pp. 353-388, 1999.
[73] R. Vinjamuri, D. J. Crammond, D. Kondziolka, H. N. Lee, and Z. H. Mao, “Extraction of sources of tremor in hand movements of patients with movement disorders,” IEEE Trans. Inf. Technol. in Biomedicine, vol. 13, no. 1, pp. 49-56, Jan. 2009.
[74] C. Wang, J. H. Kim, K. Y. Byun, J. Ni, and S. J. Ko, “Robust digital image stabilization using the Kalman filter,” IEEE Trans. Consum. Electron., vol. 55, no. 1, pp. 6-14, Aug. 2009.
[75] J. Xu, H. W. Chang, S. Yang, and M. Wang, “Fast feature-based video stabilization without accumulative global motion estimation,” IEEE Trans. Consum. Electron., vol. 58, no. 3, pp. 993-999, Aug. 2012.
[76] A. A. Yeni and S. Ertürk, “Fast digital image stabilization using one bit transform based sub-image motion estimation,” IEEE Trans. Consum. Electron., vol. 51, no. 3, pp. 917-921, Aug. 2005.
[77] D. H. Yeom, N. J. Park, and S. Y. Jung, “Digital controller of novel voice coil motor actuator for optical image stabilizer,” Int. Conf. on Contr., Autom. and Syst. 2007, Seoul, Korea, 17-20 Oct. 2007, pp. 2201-2206.
[78] D. H. Yeom, “Optical image stabilizer for digital photographing apparatus,” IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 1028-1031, Aug. 2009.
[79] H. C. Yu and T. S. Liu, “Sliding mode control suing virtual eigenvalue method for compact optical image stabilization actuators,” IEEE Trans. Magnetics, vol. 44, no. 11, pp. 4074-4077, Nov. 2008.
[80] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, “Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation,” IEEE Trans. Robot., vol. 25, no. 5, pp. 1087-1097, Oct. 2009.
[81] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1216-1227, Dec. 2006.
[82] H. Zhou and H. Hu, “Reducing drifts in the inertial measurements of wrist and elbow positions,” IEEE Trans. Instrum. and Meas., vol. 59, no. 3, pp. 575-585, Mar. 2010.