簡易檢索 / 詳目顯示

研究生: 蕭巴馬
Barma, Shovan
論文名稱: 非線性方法用於第二心音分析及其在臨床診療上之應用
Nonlinear Methods for Analyzing Second Heart Sounds and Applications in Clinical Diagnosis
指導教授: 王駿發
Wang, Jhing-Fa
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 94
中文關鍵詞: 第二心音希爾伯特振動分解心音分析
外文關鍵詞: Second Heart Sound, Hilbert Vibration Decomposition, Heart Sound Analysis
相關次數: 點閱:145下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二心音 (S2s) 是一個具有不同頻率聽覺振動的短脈衝且其包含兩個成分,稱為主動脈 (aortic, A2) 和肺動脈 (pulmonic, P2) 的閉合聲音。S2 的臨床評估已被認定為 “心臟聽診的關鍵”。A2s 和 P2s 之間的延遲在醫學術語上被稱為分裂 (split),其攜帶著重要的臨床線索。此外,其他參數如 S2s (即 A2s, P2s, 和分裂) 的持續時間和 A2s 和 P2s 的瞬時頻率能量 (EIF) 也可以提供重要的臨床線索。但是,由於 A2–P2 之間的重疊及 P2 的低能量模型導致分裂偵測的問題是難解的。就此而言,有可能將 S3 (第三心音) 誤判為一個帶有 “固定分裂” 問題的不正常的 S2。在文獻中,先前研究僅注重經驗上的分裂量測,其是基於 S2s時頻表示 (TFR) 的目視檢查,而兩個不可或缺的議題 A2–P2 重疊及 S2s 的低能量模型則被
    忽略。此外,S2s、A2s和 P2s的持續時間並沒有被利用。而且,該方法無法提供任何基於S2s 分析的診斷原則。更進一步地說,S3 和不正常 S2s (特別是 “固定分裂” 問題) 之間的誤判議題並沒有被解決。前述所提之議題在此博士論文中透過發展基於非線性訊號處理的方法被處理,其中包含非線性訊號分解、瞬時頻率估計和非線性時頻局部化。據此,發展的方法可以非常有效率的應付這兩個嚴重的議題 — A2s 和 P2s 之間的重疊以及 P2s 的低能量模型。本博士論文以三個主要的部份達到這些目標。
    在敘述方法之前,與發展方法有關的所有理論會被個別的闡明。在那之後,發展方法包括方法、實驗、結果和討論會在接下來的章節中被詳盡的說明。在第一個部分,基於稱為希爾伯特振動分解 (Hilbert vibration decomposition, HVD) 的非線性訊號分解,發展的方法可以定量的測量 S2s 的分裂。HVD 將 S2 拆解為一定數量的分量同時完整地保存相位資訊。接下來,透過使用平滑式魏格納 - 韋立分佈 (smoothed pseudo Wigner-Ville distribution, SPWVD) 和重新分配方法將 A2s 和 P2s 局部化。最後,A2s 和 P2s 的時間索引的均值之間的差異被用來計算分裂。實驗結果顯示分裂的均值 ± 標準差 (SD) 是 34.7±46ms。此方法能有效率的測量分裂,即使當 A2–P2 重疊 ≤ 20 ms 及 P2 對 A2 的正規化峰值時間比是低的 (≥0.22)。
    在第二部分,發展方法透過識別 A2s 和 P2s 的起始和結束位置可以測量持續時間、分裂和瞬時頻率的能量。與 A2s–P2s 的持續時間和 IFs 的能量 (EIFs) 有關的診斷也會被檢驗。發展方法精確地指示以識別出正常/不正常的 S2s 同時包含 S2 分裂的類型。此方法的特點是基於 Hilbert 轉換的 IF 估計和基於 SPWVD 重新分配的局部化技術。結果顯示 A2s和 P2s 的持續時間之 mean ± SD 分別為 46.7±2.5 ms 和 41.8±2.4 ms。A2s 和 P2s 的 EIFs 之mean ± SD 分別為 13.8±2.4 和 10.5±1.7。
    第三部分發展了 S3 偵測,其可以解決 S3 和帶有 “固定分裂” 的不正常 S2 之間的誤判問題。發展方法基於非線性訊號分解和時頻局部化來偵測 S3。S3 基於位置的資訊被識別並透過測量 S2-S3 之間的時間延遲來確定。結果分析顯示此方法可以正確地偵測 S3s,即使當 S3s 的正規化時間能量和頻率分別 > 0.15 和 > 35 Hz。最後,在結論中提出了限制和未來的展望。

    The second heart sounds (S2s) are a short burst of auditory vibration of varying frequencies and it includes two components, called aortic (A2) and pulmonic (P2) closure sounds. The clinical evaluations of the S2s have been recognized as “key to auscultation to the heart.” The delay between the A2s and P2s is called split in medical term, which carries significant clinical clues. Besides, the other parameters such as duration of the S2s (i.e., A2s, P2s and split) and energy of instantaneous frequencies (EIF) of the A2s and P2s can provide significant clinical clues. However, the detection of split is obscured due to overlap between A2–P2 and low energy model of the P2. In this regard, there is a chance of misreading the S3 (third heart sounds) as an abnormal S2 with “fixed split” problem. In literature, the previous works were focused only the measurement of the split empirically based on the visual inspections of the time-frequency representation (TFR) of the S2s only and two vital issues A2–P2 overlap and low energy model of P2s were ignored. Besides, the durations of the S2s, A2s, and P2s were not taken into account. Moreover, the methods could not provide any diagnostic principle based on the analysis of the S2s. Furthermore, the misreading issue between the S3 and abnormal S2s (especially “fixed split” problem) was not addressed. The aforementioned issues were handled in this dissertation by developing methods based on nonlinear signal processing which include nonlinear signal decomposition, instantaneous frequency estimation, and nonlinear time-frequency localization. In accordance, the developed methods could tackle the two serious issues of the S2s — Overlap between A2s and the P2s and low energy model of P2s very efficiently. This dissertation achieves these goals in three main parts.

    Before describing the methods all the theories concerned with the developed methods are enlightened in particulars. After that, the developed methods are explained including methods, experiments, results and discussions in subsequent chapters with full details. In the first part, the developed method can measure the split of the S2s quantitatively based on nonlinear signal decomposition called Hilbert vibration decomposition (HVD). The HVD decomposes the S2 into certain number of components while preserving the phase information intact. Further, A2s and P2s are localized by using smoothed pseudo Wigner-Ville distribution (SPWVD) followed by reassignment method. Finally, the split is calculated by taking the differences between the means of time indices of A2s and P2s. The result shows that the mean ± standard deviations (SD) of the split is 34.7±46 ms. The method measures the split efficiently, even when A2–P2 overlap is ≤ 20ms and the normalized peak temporal ratio of P2 to A2 is low (≥0.22).

    In the second part, the developed method can measure the duration, splits, and energy of instantaneous frequency by identifying start and end positions of the A2s and P2s. The diagnosis related to duration and energy of IFs (EIFs) of A2s-P2s is also examined. The developed method explicitly guides to distinguish the normal/abnormal S2s including the types of S2 splits. The method is characterized by Hilbert transform-based IF estimation as well as the localization technique based on the reassignment of SPWVD. The results show that the mean ± SD of the duration of A2s and P2s are 46.7±2.5ms and 41.8±2.4ms, respectively for normal subjects. The mean ± SD of the EIFs of A2s and P2s are 13.8±2.4 and 10.5±1.7, respectively.

    The third part, the detection of the S3 has been developed which could solve the misreading problem between the S3 and the abnormal S2 with ‘fixed split’ problem. The developed method detects the S3 based on nonlinear single decomposition and time-frequency localization. Based on the positional information, the S3 is distinguished and confirmed by measuring time delay between S2–S3. The result analysis shows that the method can detect the S3s correctly, even when normalized temporal energy and frequency of S3s are > 0.15, and > 35 Hz respectively. Finally the conclusions are drawn mentioning the limitation followed by future scopes.

    Abstract (in English)………………………………………………………… i Abstract (in Chinese) ……………………………………………………… iii Acknowledgement ……………………………………………………………… v List of Figures ……………………………………………………………… vi List of Tables ………………………………………………………………… ix Chapter 1. Introduction.......................................... 1 1.1 Preliminaries on Heart Sounds................................ 1 1.2 Second Heart Sound (S2)...................................... 3 1.2.1 Auscultation of the S2..................................... 3 1.2.2 Clinical Significance of the S2............................ 4 1.2.3 Physical Characteristics of the S2 ........................ 5 1.3 Literature Review............................................ 5 1.4 Motivation................................................... 7 1.5 Objectives .................................................. 8 1.5.1 Objective 1 ............................................... 9 1.5.2 Objective 2 ............................................... 9 1.5.3 Objective 3 ............................................... 9 1.6 Outline of the Dissertation.................................. 9 Chapter 2. Background Theory..................................... 10 2.1 Introduction................................................. 10 2.2 Estimation of Instantaneous Frequency (IF)................... 10 2.2.1 Hilbert Transform.......................................... 11 2.2.2 Analytic Signal Representation............................. 12 2.2.3 Estimation of IF using Analytic Signal Representation...... 13 2.3 Hilbert Vibration Decomposition (HVD)........................ 14 2.3.1 Extraction of Envelop and Instantaneous Frequency.......... 16 2.3.2 Synchronous Detection ..................................... 17 2.3.3 Subtraction of the Synchronous largest Component........... 19 2.3.4 An Example of HVD Method .................................. 19 2.4 Smoothed Pseudo-Wigner-Ville Distribution (SPWVD)............ 20 2.5 Reassignment of Time-Frequency Distribution.................. 23 Chapter 3. Quantitative Measurement of Split..................... 27 3.1 Introduction................................................. 27 3.2 System Overview.............................................. 29 3.3 Proposed Method ............................................. 30 3.3.1 Signal Decomposition ...................................... 30 3.3.2 Localization............................................... 32 3.3.3 Calculation of Split ...................................... 33 3.4 Experiments ................................................. 34 3.4.1 Data Set................................................... 34 3.4.2 Experimental Environment................................... 36 3.5 Results and Discussions...................................... 36 3.6 Conclusions.................................................. 43 Chapter 1. Duration and IF Estimation............................ 45 4.1 Introduction................................................. 45 4.2 System Overview.............................................. 47 4.3 Proposed Method ............................................. 48 4.3.1 Instantaneous Frequency Estimation......................... 48 4.3.2 Time-frequency Localization ............................... 49 4.3.3 Calculation of the Duration, Energy of IFs, and Splits..... 52 4.4 Experiments ................................................. 55 4.4.1 Data Set................................................... 55 4.4.2 Experimental Environment .................................. 56 4.5 Results and Discussions...................................... 57 4.5.1 Normal Case................................................ 57 4.5.2 Abnormal Case.............................................. 58 4.5.3 Effectiveness Analysis for Split Detection ................ 61 4.6 Conclusions.................................................. 62 Chapter 5. Third Heart Sound Detection .......................... 63 5.1 Introduction................................................. 63 5.2 System Overview.............................................. 65 5.2.1 Decomposition ............................................. 66 5.2.2 Localization............................................... 67 5.2.3 Detection of S3s........................................... 70 5.3 Experiments ................................................. 70 5.3.1 Data Set................................................... 70 5.3.2 Experimental Environment................................... 72 5.4 Results and Discussions...................................... 73 5.4.1 Data Analysis ............................................. 73 5.4.2 Analysis for Detection Accuracy ........................... 76 5.5 Conclusions.................................................. 78 Chapter 6. Conclusions and Future Work .......................... 79 6.1 Introduction................................................. 79 6.2 Principle Contributions...................................... 80 6.2.1 Study 1 ................................................... 80 6.2.2 Study 2 ................................................... 80 6.2.3 Study 3 ................................................... 81 6.3 Limitations.................................................. 82 6.3.1 Clinical Validation ....................................... 82 6.3.2 Computational Cost......................................... 82 6.3.3 Chaos in Heart Sound....................................... 82 6.4 Future Work.................................................. 82 6.4.1 Intelligent Stethoscope ................................... 83 6.4.2 Automatic Heart Monitoring................................. 83 6.4.3 Hardware Implementation.................................... 83 Bibliography .................................................... 84 Appendix A....................................................... 91 Appendix B....................................................... 92 Publication List ................................................ 93 Awards........................................................... 94 Curriculum Vitae ................................................ 94

    [1] H. Walker, D. Hall, and W. Hurst, (3rd Ed) Clinical Methods: The History, Physical, and Laboratory Examinations, H. Walker, D. Hall, and W. Hurst, eds., 3rd Ed., Boston: Butterworth, pp. 122–125, 1990.
    [2] M. E. Silverman, Chapter 24: The Third Heart Sound" Clinical Methods: The History, Physical, and Laboratory Examinations, H. Walker, D. Hall, and W. Hurst, eds., 3rd Ed., Boston: Butterworth, pp. 126–128, 1990.
    [3] E. S. Williams, Chapter 25: The Fourth Heart Sound" Clinical Methods: The History, Physical, and Laboratory Examinations, H. Walker, D. Hall, and W. Hurst, eds., 3rd Ed., Boston: Butterworth, pp. 129–130, 1990.
    [4] G. M. Marcus, I. L. Gerber, B. H. McKeown, J. C. Vessey, M. V. Jordan, M. Huddleston, C. E. McCulloch, E. Foster, K. Chatterjee, A. D. Michaels, “Association between phonocardiographic third and fourth heart sounds and objective measures of left ventricular function,” The Journal of the American Medical Association, vol. 293, no. 18, pp. 2238–2244, May 2005.
    [5] N. J. Mehta and I. A. Khan, “Third heart sound: genesis and clinical importance,” International Journal of Cardiology, vol. 97, no. 2, pp. 183–186, Nov. 2004.
    [6] L. Durand, and P. Pibarot, “Digital signal processing of the phonocardiogram: review of the most recent advancements,” Critical Review in Biomedical Engineering., vol. 23, no. 3–4, pp. 163-219, Dec. 1995.
    [7] J. Felner, Chapter 23: The Second Heart Sound" Clinical Methods: The History, Physical, and Laboratory Examinations, H. Walker, D. Hall, and W. Hurst, eds., 3rd Ed., Boston: Butterworth, pp. 122–125, 1990.
    [8] A. Shaver, R. Salerni, and P. S. Reddy, “Normal and abnormal heart sounds in cardiac diagnosis part I: systolic sounds,” Current Problems in Cardiology, vol. 10, no. 3, pp. 1–68, Mar. 1985.
    [9] J. Xu, L. Durand, and P. Pibarot, “Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1328–1335, Oct. 2000.
    [10] S. Debbal, and F. Reguig, “Analysis and study of the variation of splitting in the second heartbeat sound of wavelet transform,” Journal of Medical Engineering and Technology, vol. 30, no. 5, pp. 298–305, Oct. 2006.
    [11] T. Leung, P. White, J. Cook, W. Collis, E. Brown, and A. Salmon., “Analysis of the Second Heart Sound for Diagnosis of Paediatric Heart Disease,” in IEE Proceedings in Science, Measurement and Technology, vol. 145, no. 6, pp. 285–290, Nov. 1998.
    [12] A. Djebbari, and F. Reguig, “Detection of the Valvular Split Within the Second Heart Sound Using the Reassigned Smoothed Pseudo Wigner-Ville Distribution,” Biomedical Engineering Online, vol. 12, no. 1, pp. 37, Apr. 2013.
    [13] S. Debbal and F. Reguig, “Analysis of the Second Heart Sound Using Continuous Wavelet Transform,” Journal of Medical Engineering and Technology, vol. 28, no. 4, pp. 151–156, Aug. 2004.
    [14] Rangayyan, Rangraj M., and Richard J. Lehner. “Phonocardiogram signal analysis: a review” Critical Reviews in Biomedical Engineering, vol. 15, no. 3, pp. 211–236, Sep. 1986.
    [15] M. Chizner, “Cardiac Auscultation: Rediscovering the Lost Art,” Current Problems in Cardiology, vol. 33, no. 7, pp. 326–408, Jul. 2008.
    [16] L. M. Douglas., D. P. Zipes, P. Libby, and R. O. Bonow, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Elsevier Health Sciences, 2014.
    [17] T. Reed, N. Reed, and P. Fritzson, “Heart sound analysis for symptom detection and computer-aided diagnosis,” Simulation, Modeling, Practice, and Theory, vol. 12, no. 2, pp. 129–146, May 2004.
    [18] J. J. Lee, S. M. Lee, I. Y. Kim, H. K. Min, and S. H. Hong “Comparison Between Short Time Fourier and Wavelet Transform for Feature Extraction of Heart Sound,” IEEE International Conferences Proceedings IEEE Region 10 (TENCON 99), Cheju Island South Korea, Dec. 1999, vol. 2, pp. 1547-1550.
    [19] B. Ergen, and Y. Tatar, “Optimal Continuous Wavelet Analysis of Periodogram Signals,” IJCI Proceedings International Conference on Signal Processing, vol. 1, pp. 188-192, Sep. 2003.
    [20] P. Vikhe, S. Hamde, and N. Nehe, “Wavelet Transform Based Abnormality Analysis of Heart Sound,” in International Conference in Advance Computing, Control, Telecommunication, &Technology (ACT'09), Trivandrum, India, Dec. 2009, pp. 367-371.
    [21] J. Xu, L. Durand, and P. Pibarot, “Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 3, pp. 277–283, Mar. 2001.
    [22] A. Djebbari, and F. Reguig, “Smoothed Pseudo Wigner-Ville Distribution of Normal and Aortic Stenosis Heart Sounds,” Journal of Mechanics in Medicine and Biology, vol. 5, no. 3, pp. 415-428, Sep. 2005.
    [23] I. Yildirim, and R. Ansari, “A Robust Method to Estimate Time Split in Second Heart Sound Using Instantaneous Frequency Analysis,” in Annual International Conference in Engineering in Medicine and Biology Society, Lyon, France, Aug. 2007, pp. 1855-1858.
    [24] F. Auger, and P. Flandrin, “Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method,” IEEE Transactions on Signal Process., vol. 43, no. 5, pp. 1068-1089, Aug. 1995.
    [25] F. Auger, and P. Flandrin, “Generalization of the Reassignment Method to All Bilinear Time-Frequency and Time-Scale Representations,” in IEEE International Conference in Acoustics, Speech and Signal Process. (ICASSP'94), Adelaide, Australia,, Apr. 1994, vol. 4, pp. 317-320.
    [26] B. Popov, G. Sierra, L. Durand, J. Xu, P. Pibarot, R. Agarwal, and V. Lanzo, “Automated extraction of aortic and pulmonary components of the second heart sound for the estimation of pulmonary artery pressure,” in IEEE International Conference of Engineering in Medicine and Biology Society (EMBS 2004), San Francisco, USA, Sep. 2004, vol. 1, pp. 921–924.
    [27] C. Ahlstrom, O. Liljefeldt, P. Hult, and P. Ask, “Heart sound cancellation from lung sound recordings using recurrence time statistics and nonlinear prediction,” IEEE Signal Processing Letter, vol. 12, no. 12, pp. 812–815, Dec. 2005.
    [28] H. Tang, J. Gao, and Y. Park, “Heart valve closure timing intervals in response to left ventricular blood pressure,” Journal of Biomedical Science and Engineering, vol. 6, no. 1, pp. 65–75, Jan. 2013.
    [29] M. Segaier, O. Lilja, S. Lukkarinen, L. Sornmo, R. Sepponen, and E. Pesonen, “Computer-based detection and analysis of heart sound and murmur,” Annals of Biomedical Engineering, vol. 33, no. 7, pp. 937–942, Jul. 2005.
    [30] G. Andria, M. Savino, and A. Trotta, “Application of Wigner-Ville distribution to measurements on transient signals,” IEEE Transaction on Instrumentation and Measurement, vol. 43, no. 2, pp. 187–193, Apr. 1994.
    [31] L. Stankovic, “Time-frequency distributions with complex argument,” IEEE Transaction on Signal Processing, vol. 50, no. 3, pp. 475–486, Mar. 2002.
    [32] R. M. Rangayyan, Biomedical signal analysis: IEEE Standards Office, 2001.
    [33] D. Vakman and L. Vaĭnshteĭn, Amplitude, phase, frequency—Fundamental Concepts of Oscillation Theory, Soviet Physics Uspekhi, vol. 20, pp. 1002, 1977.
    [34] D. Vakman, “New high precision frequency measurement,” Measurement Science and Technology, vol. 11, no. 10, pp. 1493–1497, 2000.
    [35] L. Sun, M. Shen, and F. H. Chan, “A method for estimating the instantaneous frequency of non-stationary heart sound signals,” in International Conference on Neural Network and Signal Processing, Nanjing, China, Dec. 2003, vol. 1, pp. 798–801.
    [36] S. L. Hahn, Hilbert transforms in signal processing, Artech House, 1996.
    [37] F. W. King Hilbert Transforms, volume 125 of Encyclopedia Of Mathematics And Its Applications, ed: Cambridge University Press, 2009.
    [38] M. Feldman, Hilbert Transform Application in Mechanical Vibration. 1st Ed., UK: John Wiley & Sons Ltd., 2011.
    [39] M. Feldman, “Hilbert Transform in Vibration Analysis,” Mechanical Systems and Signal Processing, vol. 25, no. 3, pp. 735-802, 2011.
    [40] R. N. Bracewell and R. Bracewell, The Fourier Transform and Its Applications, vol. 31999: McGraw-Hill New York, 1986.
    [41] P. J. Schreier and L. L. Scharf, Statistical signal processing of complex-valued data: the theory of improper and noncircular signals: Cambridge University Press, 2010.
    [42] D. Vakman, Signals Oscillations and Waves: A Modern Approach. Boston, USA: Artech House, 1998.
    [43] R. G. Lyons, Understanding Digital Signal Processing. Pearson Education, 2010.
    [44] R. Lyons, “Quadrature Signals: Complex, But Not Complicated” URL: http://www. dspguru. com/info/tutor/quadsig. htm, 2000.
    [45] M. Feldman, “Non-linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method ‘FREEVIB’,” Mechanical Systems and Signal Processing, vol. 8, no. 2, pp. 119-127, 1994.
    [46] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu.,“The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis,” in Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903-995, Mar. 1998.
    [47] B. Boashash, “Estimating and Interpreting the Instantaneous Frequency of a Signal. I. Fundamentals,” IEEE Proceedings, vol. 80, no. 4, pp. 520-538, Apr. 1992.
    [48] M. Feldman, “Theoretical analysis and comparison of the Hilbert transform decomposition methods,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 509–519, Oct. 2008.
    [49] W. M. Hartmann, Signals, Sound, and Sensation: Springer, 1997.
    [50] G. R. Blackwell, The electronic packaging handbook: CRC Press, 2002
    [51] B. Ergena, Y. Tatara, and H. O. Gulcur, “Time-frequency analysis of phonocardiogram signals using wavelet transform: A comparative study,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 15, no. 4, pp. 371–381, Jun. 2011.
    [52] S Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Processing Magazine, vol. 16, no. 2, pp. 52-67, 1999.
    [53] B. Boashash, Time Frequency Analysis, 1st Ed., UK: Elsevier Ltd., 2003.
    [54] L. Stankovic, M. Dakovic, and T. Thayaparan, Time-Frequency Signal Analysis with Applications. Boston, USA: Artech House, 2013.
    [55] F. Hlawatsch and F. Auger, Time-Frequency Analysis: Concepts and Methods. vol. 36, Hoboken, NJ: John Wiley & Sons, 2010.
    [56] P. Flandrin, F. Auger, and E. Mottin, “Time-frequency reassignment: from principles to algorithms,” in Applications in Time-Frequency Signal Processing, vol. 5, A. Suppappola, Ed. Boca Raton: CRC Press LLC, 2003, pp. 179–203.
    [57] Q. Zhu, Y. Wang, and G. Shen, “Research and Comparison of Time-frequency Techniques for Nonstationary Signals,” Journal of Computers, vol. 7, no. 4, pp. 954-958, Apr. 2012.
    [58] B. Reyes S. Charleston-Villalobos, R. Gonzalez-Camarena, and T. Aljama-Corrales, “Time Frequency Representations for Second Heart Sound Analysis,” IEEE International Conference of Engineering in Medicine and Biology Society, Vancouver, Canada, Aug. 2008, pp. 3616-3619.
    [59] Z. Zhidong, Z. Zhijin, and C. Yuquan, “Time-Frequency Analysis of Heart Sound Based on HHT [Hilbert-Huang Transform],” International Conference on Communications, Circuits and Systems, vol. 2, May 2005.
    [60] L. Liu, L. Liu, H. Wang; Y. Wang, T. Tao; and X. Wu., “Feature Analysis of Heart Sound Based on the Improved Hilbert-Huang Transform,” IEEE International Conference of Computer Science and Information Technology, Chengdu, China Jul. 2010, vol. 6, pp. 378-381.
    [61] Y. L. Tseng, P. Y. Ko, and F. S. Jaw, “Detection of the third and fourth heart sounds using Hilbert-Huang transform,” Biomedical Engineering Online, vol. 11, no. 1, pp. 1–13, Aug. 2012.
    [62] J. Chen H. L. Hou, L. C. Luo, and Y. Cheng, “Automatic Identification Method for the First and Second Heart Sound Based on Double-Threshold,” Jisuanji Gongcheng Computer Engineering., vol. 38, no. 16, pp. 174-177, Aug. 2012.
    [63] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical Mode Decomposition as a Filter Bank,” IEEE Signal Processing. Letter, vol. 11, no. 2, pp. 112-114, Jan. 2004.
    [64] M. Feldman, “Time-Varying Vibration Decomposition and Analysis Based on the Hilbert Transform,” Journal of Sound Vibration, vol. 295, no. 3, pp. 518-530, Aug. 2006.
    [65] F. Auger, P. Flandrin, P. Goncalves, and O. Lemoine. (1999, Jan.). Time-frequency toolbox for Matlab. [Online]. Available: http://tftb.nongnu.org/.
    [66] S. M. Debbal and F. Bereksi-Reguig, “Time-frequency analysis of the first and the second heartbeat sounds,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 1041–1052, Jan. 2007
    [67] L. Angrisani and M. D'Arco, “A measurement method based on a modified version of the chirplet transform for instantaneous frequency estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 4, pp. 704–711, Aug. 2002.
    [68] Z. Peng, G. Meng, F. Chu, Z. Lang, W. Zhang, and Y. Yang, “Polynomial chirplet transform with application to instantaneous frequency estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 9, pp. 3222–3229, Sep. 2011.
    [69] L. Angrisani, M. D'Arco, R. Moriello, and M. Vadursi, “On the use of the warblet transform for instantaneous frequency estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 4, pp. 1374–1380, Aug. 2005.
    [70] A. Carlosena, C. Macua, and M. Zivanovic, “Instrument for the measurement of the instantaneous frequency,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 4, pp. 783–789, Aug. 2000.
    [71] N. Tse, J. Y. Chan, W. Lau, and L. Lai, “Hybrid wavelet and hilbert transform with frequency-shifting decomposition for power quality analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 12, pp. 3225–3233, Dec. 2012.
    [72] E. Hermanowicz, M. Rojewskia, G. Cainb, and A. Tarczynskic, “On an instantaneous frequency estimator with FIR filters having maximally flat frequency response error magnitude,” Signal Processing, vol. 81, no. 7, pp. 1491–1501, Jul. 2001.
    [73] D. Vakman, “Computer measuring of frequency stability and the analytic signal,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 4, pp. 668–671, Aug. 1994.
    [74] S. Engelberg and E. Chalom, “Measuring the spectral content of a signal: an introduction [instrumentation notes],” IEEE Instrumentation and Measurement Magazine, vol. 13, no. 6, pp. 34–38, Dec. 2010.
    [75] P. Hao, W. Zanji, and C. Jianye, “A measuring method of the single-phase AC frequency, phase, and reactive power based on the Hilbert filtering,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 3, pp. 918–923, Jul. 2007.
    [76] M. Caciotta, S. Giarnetti, F. Leccese, and Z. Leonowicz, “Detection of short transients and interruptions using the Hilbert transform,” in XIX IMEKO World Congress of Fundamental Application and Metrology, Lisbon, Portugal, Sep. 2009, pp. 913–916.
    [77] C. Minge, “Design of Equiripple Linear-Phase FIR Filters Using MATLAB,” in International Conference of Control Automation and System Engineering (CASE), Singapore, Jul. 2011, pp. 1–4.
    [78] V. Nigam and R. Priemer, “A dynamic method to estimate the time split between the A2 and P2 components of the S2 heart sound,” Physiological Measurement, vol. 27, no. 7, pp. 553–567, Jul. 2006.
    [79] F. Auger, P. Flandrin, Y. Lin, S. McLaughlin, S. Meignen, T. Oberlin, and H. Wu, “Time-frequency reassignment and synchrosqueezing: an overview,” IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 32–41, Nov. 2013.
    [80] K. Fitz and S. Fulop. (2009, Mar. 18). “A unified theory of time-frequency reassignment,” [Online]. Available: http://arxiv.org/pdf/0903.3080v1.pdf.
    [81] A. Dennis, A. Michaels, P. Arand, and D. Ventura, “Noninvasive diagnosis of pulmonary hypertension using heart sound analysis,” Computers in Biology and Medicine, vol. 40, no. 9, pp. 758–764, Sep. 2010.
    [82] Heart Sounds Podcast Series, Texas Heart® Institute. (2011, Dec. 6). [Online]. Available: http://www.texasheart.org/Education/CME/explore/events/eventdetail_6456.cfm.
    [83] P. Hult, T. Fjällbrant, K. Hildén, U. Dahlström, B. Wranne, and P. Ask, “Detection of the third heart sound using a tailored wavelet approach: method verification,” Medical and Biological Engineering and Computing, vol. 43, no. 2, pp. 212–217, Apr. 2005.
    [84] M. Johnston, S. P. Collins, and A. B. Storrow, “The third heart sound for diagnosis of acute heart failure,” Current Heart Failure Reports, vol. 4, no. 3, pp. 164–169, Mar. 2008.
    [85] C. E. Lok, C. D. Morgan, and N. Ranganathan, “The accuracy and interobserver agreement in detecting the gallop sounds’ by cardiac auscultation,” CHEST Journal, vol. 114, no. 5, pp. 1283–1288, Nov. 1998.
    [86] R. Patel, D. Bushnell, and P. Sobotka, “Implications of an audible third heart sound in evaluating cardiac function,” Western Journal of Medicine, vol. 158, no. 6, pp. 606–609, Jun. 1993.
    [87] C. Ahlstrom, P. Hult, and P. Ask, “Detection of the 3rd heart sound using recurrence time statistics,” in IEEE International Conference in Acoustic, Speech and Signal Processing (ICASSP), Toulouse, France, May 2006, vol. 2, pp. 1040–1043.
    [88] J. Wynne, “The clinical meaning of the third heart sound,” American Journal of Medicine, vol. 111, no. 2, pp. 157–158, Aug. 2001.
    [89] C. M. Tribouilloy, M. E. Sarano, D. Mohty, R. A. Horn, K. R. Bailey, J. B. Seward, A. M. Weissler, and A. J. Tajik, “Pathophysiologic determinants of third heart sounds: a prospective clinical and doppler echocardiographic study,” American Journal of Medicine, vol. 111, no. 2, pp. 96–102, Aug. 2001.
    [90] G. Marcus, J. Vessey, M. V. Jordan, M. Huddleston, B. McKeown, I. L. Gerber, E.Foster, K. Chatterjee, C. E. McCulloch, and A. D. Michaels, “Relationship between accurate auscultation of a clinically useful third heart sound and level of experience,” Archives of Internal Medicine, vol. 166, no. 6, pp. 617–622, Mar. 2006.
    [91] G. Livanos, N. Ranganathan, and J. Jiang, “Heart sound analysis using the S transform,” in Conference of Computers in Cardiology, Cambridge, UK, Sep. 2000, pp. 587–590.
    [92] E. Sejdic and J. Jin, “Comparative study of three time-frequency representations with applications to a novel correlation method,” in IEEE International Conferences in Acoustic Speech and Signal Process. (ICASSP), Montreal, Canada, May 2004, vol. 2, pp. 633–636.
    [93] P. Hult, T. Fjällbrant, B. Wranne, and P. Ask, “Detection of the third heart sound using a tailored wavelet approach,” Medical and Biological Engineering and Computing, vol. 42, no. 2, pp. 253–258, Mar. 2004.
    [94] D. Kumar, P. Carvalho, M. Antunes, J. Henriques, A. S. Melo, R. Schmidt, and J. Habetha, “Third heart sound detection using wavelet transform-simplicity filter,” in IEEE International Conference of Engineering in Medicine and Biology Society(EMBS), Lyon, France, Aug. 2007, pp. 1277–1281.
    [95] N. E. Huang and Z. Wu, “A review on Hilbert-Huang transform: Method and its applications to geophysical studies,” Reviews of Geophysics, vol. 46, no. 2, pp. 1–23, Jun. 2008.
    [96] S. Barma, B. W. Chen, K. L. Man, and J. F. Wang, “Quantitative Measurement of Split of the Second Heart Sound (S2),” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. PP, pp. 1-1, (Early Access)

    下載圖示 校內:2020-08-13公開
    校外:2020-08-13公開
    QR CODE