簡易檢索 / 詳目顯示

研究生: 陳泓璋
Chen, Hung-Chang
論文名稱: 電沉積鈀銥合金薄膜及其甲醇電氧化之催化探討
Co-electrodeposition of PdIr alloy thin film and its catalytic efficiency in methanol electro-oxidation
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 鈀銥合金電沉積欠電位沉積甲醇電氧化
外文關鍵詞: PdIr alloy film, electrodeposition, underpotenial deposition, methanol oxidation
相關次數: 點閱:121下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此實驗利用定電位沉積的方法,浸入銦錫氧化物之導電玻璃上,後續並測量電甲醇氧化的催化效果,變動參數上使用電位選擇、錯合劑三乙醇濃度選擇,及電沉積時間的長短,及使用欠電位沉積TEA-PdIr 表面上,利用X-光繞射儀(XRD)、能量分散式光譜儀(EDS)、掃描式電子顯微鏡(SEM)與循環伏安法(CV),分析其結晶的程度,顆粒的大小,元素的組成比例,表面的形貌,及最終電甲醇氧化催化效率。由最終電甲醇氧化效率的結果,於沉積電位於-0.4 V 下之所備至鈀銥合金催化效率並沒有優於純鈀且也容易產生脫膜的現象。於添加三乙醇胺(TEA)所生成的合金薄膜可以有效增加電沉積時間,並且增加電甲醇的氧化效率,但合金狀態並沒有明顯超過單純純鈀電甲醇氧化,隨著第三變動因素,時間的拉長,可以觀察到PdIr 合金甲醇電氧化部分可以跟純鈀薄膜不相上下,因純鈀會產生CO 毒性問題,那PdIr 就可以有效降低此一現象發生,而在添加0.1 M TEA 下電沉積時間900 s,Pd+2 及Ir+3 離子比例電沉積液9:1,Ir 的含量只占2.43 %,有最佳甲醇電氧化效率。

    The experiment of PdIr thin film is fabricated by the co-electrodeposition on the indium tin oxide (ITO) of Conductive glass coated PdIr, and thus gets the catalytic efficiency in methanol electro-oxidation. There are four changed parameters included in this experiment: select the deposition potential, concentration of triethanolamine (TEA), time of electrodeposition, and Ir underpotenial deposition (UPD).
    The effect found by the researcher is that -0.4 V will be able to form electrodeposition of PdIr alloy film on the ITO glass. However, the efficiency of catalyst is not high enough compared to pure Pd film, and another phenomenon is that desorption takes place in the process of methanol electro-oxidation. The following is to add TEA to electrodeposition solution, the researcher finds that TEA not only increases the time of electrodeposition but also improves the current density of the methanol electro-oxidation. Consequently, 0.1 M triethanolamine is added to the electrolyte, which makes the PdIr alloy film abtain more homogeneous and adhesive easily with ITO. As to final factor, the researcher increases the time of bimetallic electrodeposition to 900s, and gets the same value as pure Pd thin film in methanol electro-oxidation. Although it’s not excellent in methanol electro-oxidation, the metallic PdIr thin film of poisoning resistance is better than pure Pd thin film.

    摘要 I Extend abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 燃料電池 1 1-1-1 燃料電池的演進 1 1-1-2 運作原理 2 1-1-3 燃料電池的優點 3 1-1-4 燃料電池的種類 4 1-2 直接甲醇燃料電池(DMFCs) 7 1-2-1 介紹 7 1-2-2 主要構造 7 1-2-3 反應原理 8 1-2-4 極化現象 9 1-2-5 甲醇氧化機制 11 1-3 研究動機與目的 12 第二章 實驗原理 14 2-1 電催化原理 14 2-1-1 電催化反應介紹 14 2-1-2 電催化甲醇反應機制 15 2-2 實驗原理 17 2-2-1 Underprotential deposition (UPD) 18 2-2-2 Surface-Limited Redox Replacement(SLRR) 19 2-3 儀器原理 19 2-3-1 循環伏安法(Cyclic voltammetry、CV) 19 2-3-2 定電位電解法(Chronoamperometry、CA) 21 2-3-3 X-射線繞射分析(X-ray Diffractometer、XRD) 22 2-3-4 能量分散式光譜分析儀(Energy Disperive Spectroscopy、EDS) 23 2-3-5 掃描式電子顯微鏡(Scanning Electron Microscopy、SEM) 23 第三章 實驗方法與步驟 25 3-1 實驗流程圖 25 3-2 實驗藥品與儀器 26 3-3 實驗方法與步驟 27 3-3-1 三電極試反應槽裝置 27 3-3-2 電沉積液配置 28 3-3-3 電沉積PdIr 合金 28 3-3-4 薄膜性質量測 29 第四章 結果與討論 30 4-1 沉積電位影響鈀銀合金薄膜之探討 30 4-1-1 鈀、銥溶液之循環伏安法分析 30 4-1-2 XRD 38 4-1-3 PdIr 合金組成分析 43 4-1-4 PdIr 合金形貌分析 44 4-1-5 甲醇電氧化分析(Methanol oxidation reaction) 49 4-2 錯合劑TEA 濃度影響鈀銀合金薄膜之探討 55 4-2-1 介紹 55 4-2-2 循環伏安法分析 56 4-2-3 XRD 58 4-2-4 PdIr 合金組成分析 62 4-2-5 PdIr 合金形貌分析 63 4-2-6 甲醇電氧化 68 4-3 沉積電量影響鈀銥合金博膜之探討 71 4-3-1 介紹 71 4-3-2 XRD 71 4-3-3 PdIr 合金組成分析 79 4-3-4 PdIr 合金形貌分析 80 4-3-5 甲醇電氧化 84 4-4 PdIr 欠電位沉積之影響(Underpotential deposition、UPD) 86 4-4-1 欠電位沉積之影響 86 4-4-2 欠電位沉積時間之影響 88 4-4-3 PdIr 合金組成分析 89 4-4-4 PdIr 合金形貌分析 91 4-4-5 甲醇電氧化 92 第五章 結論 94 參考文獻 99 附錄 104

    參考文獻
    1. Grove, W.R. On Voltaic Series and the Combination of Gases by Platinum. Philosophical Magazine, 1838.14:p. 127.
    2. Nice, K. and Strickland, J. Polymer Exchange Membrane Fuel Cells. How Fuel Cells Work. 2000.
    3. Taiwan power. Taiwan Power Company Sustainability Report, 2013:p.45, Taipei, R.O.C.
    4. Fuel Cell Handbook. 2004, Seventh Edition :p. 1-20. EG&G Technical Services, Inc. Morgantown, West Virginia, U.S.A.
    5. 旗威科技有限公司, 勝光科技股份有限公司合著, 新能源時代のDMFC :直接甲醇燃料電池原理、應用與實作. 台北市, 中華民國.
    6. 黃鎮江, 燃料電池. 全華圖書股份有限公司, 2005, 新北市, 中華民國.
    7. Reid, J. H. US Patent No. 736016017(1902)
    8. 衣寶廉, Fuel Cells:The Principles and Applications. 五南圖書出版社, 2005, 台北市, 中華民國.
    9. Prater, D. N., and Rusek, J. J. Energy density of a methanol/hydrogen-peroxide fuel cell. Applied Energy, 2003.74:p. 135.
    10. Hashim, N., Kamarudin, S. K. and Daud, W. R. W. Design, fabrication and testing of a PMMA-based passive single-cell and a multi-cell stack micro-DMFC. Int. J. Hydrogen Energy, 2009.34(19):p. 8263.
    11. Chen, J. J., Study on the Metal Mesh Type Polymer Electrolyte Membrane Fuel Cell. National Central University Institutional Repository, 2007.
    12. 許寧逸, 顏溪成, 及台大化工系所, 由碳能朝向氫能的燃料電池, 科學發展, 2003, 7月. 367期.
    13. Zhang, J., Xia, Z. and Dai, L. Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015. 1(7):p. e1500564.
    14. Zhu, Y., Uchida, H., Yajima, T. and Watanabe, M. Attenuated total reflection-Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir, 2000.17(1):p.146.
    15. Alessandro, L., Hamish, M., Francesco, V. Nanotechnology in Electrocatalysis for Energy.2013, Springer, New York, USA
    16. Jung, N., Chung, D. Y., Ryu, J., Yoo, S. J. and Sung, Y.-E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Science Direct, 2014. 9(4): p. 433-456.
    17. Wu, G., Chen, Y.-S. and Xu, B.-Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem. Commun., 2005. 7(12): p. 1237-1243.
    18. Grozovski, V., Climent, V., Herrero, E. and Feliu, J. M. Intrinsic Activity and Poisoning Rate for HCOOH Oxidation at Pt(100) and Vicinal Surfaces Containing Monoatomic (111) Steps. Chem. Phys. Chem., 2009. 10(11): p.1922-1926.
    19. Basu, D. and Basu, S. Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int. J. Hydrogen Energy, 2012. 37(5): p.4678-4684.
    20. Hsieh, M.-W. and Whang, T.-J. Electrodeposition of PdCu alloy and its application in methanol electro-oxidation. Appl. Surf. Sci., 2013. 270: p. 252-259.
    21. Zhang, Z. H., Ge, J. J., Ma, L. A., Liao, J.H., Lu,T. H. and Xing,W. Highly Active Carbon-supported PdSn Catalysts for Formic Acid Electrooxidation. Fuel Cells, 2009. 9(2):p. 114-120.
    22. Yu, W.-Y., Mullen, G., M. Flaherty, D.W. and Mullins, C.B. Selective Hydrogen Production from Formic Acid Decomposition on Pd–Au Bimetallic Surfaces. J. Am. Chem. Soc., 2014. 136(31): p. 11070-11078.
    23. Tominaka, S. Momma, T. and Osaka, T. Electrodeposited Pd-Co catalyst for direct
    methanol fuel cell electrodes: Preparation and characterization. Electrochim. Acta, 2008. 53(14): p. 4679-4686.
    24. Li, W. and Haldar, P. Supportless PdFe nanorods as highly active electrocatalyst for proton exchange membrane fuel cell. Electrochem. Commun., 2009. 11(6): p. 1195-1198.
    25. Sarkar, A., Vadivel, M. A. and Manthiram, A. Synthesis and Characterization of Nanostructured Pd−Mo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. J. Phys. Chem. C, 2008. 112(31):p. 12037-12043.
    26. Islam, M. A., Ahmad, M. M., Mohamed, S. E. and Bahgat, E. E. Advances in Direct Formic Acid Fuel Cells: Fabrication of Efficient Ir/Pd Nanocatalysts for Formic Acid Electro-Oxidation Int. Electrochem. Sci, 2015. 10: p. 3282-3290.
    27. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. and Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater., 2008. 7(4): p. 333-338.
    28. Marković, N. M., Gasteiger, H. A., Ross Jr, P. N., Jiang, X., Villegas, I. and Weaver, M. J. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim. Acta, 1995. 40(1): p. 91.
    29. Radmilovic, V., Gasteiger, H. A. and Ross, P. N. Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. J. Catal., 1995. 154(1): p. 98-106.
    30. Noto, V. D., Negro, E., Piga, M., Piga, L., Lavina, S. and Pace, G. New Platinum-Free Carbon Nitride Electrocatalysts for PEMFCs Prepared Using as Precursors PAN/M(CNCH3)x Complexes (M = Pd, Co, Au, Ni). ECS Trans., 2007. 11(1): p. 249-260.
    31. Hogarth, M. P. and Ralph, T. R. Catalysis for Low Temperature Fuel Cells. Platin. Met. Rev., 2002. 46(4): p. 146-164.
    32. Rotha, C., Papworthb, A. J., Hussaina, I., Nicholsa, R. J. and Schiffrina, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem., 2005. 581(1): p. 79-85.
    33. Lee, M. J., Kang, J. S. Kang, Y. S., Chung, D. Y., Shin, H., Ahn, C.-Y., Park, S., Kim, M.-J., Kim, S., Lee, K.-S. and Sung, Y.-E. Understanding the Bifunctional Effect for Removal of CO Poisoning: Blend of a Platinum Nanocatalyst and Hydrous Ruthenium Oxide as a Model System. ACS Catalysis, 2016. 6(4): p. 2398-2407.
    34. Wang, Y. Q., Wei, Z. D., Li, L., Ji, M. B., Xu,Y., Shen, P. K., Zhang, J. and Zhang, H. Methanol Electrochemical Oxidation on Au/Pt Electrode Enhanced by Phosphomolybdic Acid. J. Phys. Chem. C, 2008. 112(47): p. 18672-18676.
    35. Xu, C., Chenga, L., Shen, P. and Liu, Y. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun., 2007. 9(5): p. 997-1001.
    36. Cheng, F., Dai, X., Wang, H., Jiang, S. P., Zhanga, M. and Xu, C. Synergistic effect of Pd–Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation. Electrochim. Acta, 2010. 55(7): p. 2295-2298.
    37. Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T. and Xu, Qiang. Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. J. Am. Chem. Soc., 2011. 133(31): p. 11822-11825.
    38. Kadirgan, F., Beyhan, S. and Atilan, T. Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int. J. Hydrogen Energy, 2009. 34(10): p. 4312-4320.
    39. Adams, B. D., Asmussen, R. M., Ostrom, C. K. and Chen, A. Synthesis and Comparative Study of Nanoporous Palladium-Based Bimetallic Catalysts for Formic Acid Oxidation. J. Phys. Chem. C, 2014. 118(51): p. 29903-29910.
    40. Sudha, V. and Sangaranarayanan, M. V. Underpotential Deposition of Metals:  Structural and Thermodynamic Considerations. J. Phys. Chem. B, 2002. 106(10): p. 2699-2707.
    41. Holze, R. Underpotential deposit electrocatalysis of fast redox reactions for electrochemical energy storage systems. J. Solid State Electrochem., 1998. 2(2): p. 73-77.
    42. Michaelson, H. B. J. Appl. Phys.,1997. 48: p. 4729.
    43. Fayette, M., Lyu,Y., Bertrand, D., Nutariya, J., Vasiljevic, N. and Dimitrov, N. From Au to Pt via surface limited redox replacement of Pb UPD in one-cell configuration. Langmuir, 2011. 27(9): p.5650-8.
    44. Amri, Z.A., Mercer, M.P. and Vasiljevic, N. Surface Limited Redox Replacement Deposition of Platinum Ultrathin Films on Gold: Thickness and Structure Dependent Activity towards the Carbon Monoxide and Formic Acid Oxidation reactions. Electrochim. Acta, 2016. 210: p. 520-529.
    45. Vairavapandiana, D. and Stickney, J. L. Formation of Platinum films by Electrochemical Atomic Layer Deposition(ALD) via Redox Replacement of UPD:Studies of Pb UPD as a Sacrificial Metal. ECS Trans., 2007. 3(25): p. 329.
    46. Nutariya, J., Fayette, M., Dimitrov, N. and Vasiljevic, N. Growth of Pt by surface limited redox replacement of underpotentially deposited hydrogen. Electrochim. Acta, 2013. 112: p. 813-823.
    47. Skoog, D. A., West, D. M., Holler, F. J. and Crouch, F. R. Fundamentals of Analytical Chemistry. 2004, Eighth Edition:p. 694-699. Thomson Brooks/cole , California, U.S.A.
    48. Bard, A. J. and Faulkner, L. R. Electrochemical methods:Fundamentals and applications.2001, Second Edition:p. 163. John Wiley & Sons,Inc. Hoboken, New Jersey, U.S.A.
    49. Cottrell, F.G., Z. Phys. Chem., 1903. 42 :p. 385.
    50. 楊曉菁, 硫氧化物及聚賽吩衍生物在金、鉑電極上之研究. 國立中央大學碩士論文. 2003.
    51. 林麗娟, 工業材料 1994. 86: p. 100-109.
    52. 許樹恩 and 吳泰伯, X-光繞射原理與材料結構分析. 1992.
    53. Wanga, X., Tanga, Y., Gaob, Y. and Lu,T. Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. J. Power Sources, 2008. 175(2): p. 784-788.
    54. Chakrapani, K. and Sampath, S. The dual role of borohydride depending on reaction temperature: synthesis of iridium and iridium oxide. Chem. Commun., 2015. 51(47): p. 9690-9693.
    55. Miessler, G. L., Fischer, P. J. and Tarr, D. A. Inorganic Chemistry. 2014, Fifth Edition. Pearson Education, Inc. New York, U.S.A.
    56. Ramírez, C. and Calderón, J. A. Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. J. Electroanal. Chem., 2016. 765: p. 132-139.
    57. Baysinger, G. Berger, L. I., Goldberg, R. N., Kehiaian, H. V., Kuchitsu, K. K., Rosenblatt, G., Roth, D. L. and Zwillinger, D. CRC Handbook of Chemistry and Physics. 2005, Internet Version: p. 25-26. CRC Press, Florida, U.S.A.

    下載圖示 校內:2021-08-21公開
    校外:2021-08-21公開
    QR CODE