簡易檢索 / 詳目顯示

研究生: 彭俊憲
Peng, Jun-Xian
論文名稱: 車用永磁同步馬達抗退磁設計
Anti-demagnetization Design of Permanent Magnet Synchronous Motor for Electric Vehicle
指導教授: 謝旻甫
Hsieh, Min-Fu
共同指導教授: 黃柏維
Huang, Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 內藏型永磁同步馬達車用馬達設計特徵電流V型磁鐵配置磁障層抗退磁設計
外文關鍵詞: flux barrier, interior permanent magnet synchronous motor, anti-demagnetization capability, traction motor, V-type IPMSM, characteristic current
相關次數: 點閱:108下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文著重於分析永磁同步馬達轉子磁障層設計與抗退磁能力之關係。在馬達初步設計時,較高的磁鐵操作點有利於增加馬達的過載能力,提高馬達最大功率密度,而車用動力馬達經常運作於高溫與高電流密度之操作環境,容易使磁鐵發生不可逆的退磁現象,進而導致馬達壽命減短。為避免此狀況發生,除了改善散熱條件外,藉由磁路設計提高馬達抗退磁能力也相當重要。
    本文分為兩部分,第一部分為轉子幾何改變對於特徵電流與抗退磁能力之影響;第二部分則藉由加入磁障層設計,在維持馬達性能條件下提高磁鐵抗退磁能力,並以有限元素分析模擬驗證磁鐵退磁面積與部分退磁現象。最後,本文提 出V型內藏型永磁同步馬達設計流程,透過模擬與實驗量測,驗證磁障層設計對於抗退磁能力的重要性。

    This thesis focuses on the analysis and design of flux barriers for improving the anti-demagnetization capability of interior permanent magnet synchronous motor (IPMSM).
    The finite element analysis (FEA) is applied in order to understand the flux barrier impact on the IPMSM anti-demagnetization capability. It is necessary to improve the anti-demagnetization capability of the traction motors that usually operate at high temperature and high current density. This makes the permanent magnet motor vulnerable to irreversible demagnetization.
    In this thesis, a brief study of the characteristic current and the demagnetization characteristic of the IPMSM is conducted to understand their relationship on the motor performance during flux weakening operation. The study is done by varying the rotor geometric variables and observing their effect on the parameters (characteristic current and demagnetization characteristic), which are calculated by FEA.
    Finally, various V-type IPMSMs are designed. The best model of anti-demagnetization capability is selected as the prototype design. The design is verified by experiments.

    中文摘要 I Abstract II 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 符號表 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 6 第二章 磁鐵材料與退磁現象 7 2.1 磁鐵材料簡介 7 2.2 磁鐵退磁現象 9 2.2.1 磁滯曲線 9 2.2.2 溫度變化與內稟磁滯曲線 11 2.2.3 磁導係數 13 2.3 電樞磁場與等效磁路模型 15 第三章 車用內藏型永磁同步馬達設計 18 3.1 馬達負載分析 18 3.1.1 行駛阻力分析 19 3.1.2 馬達所需負載性能 20 3.2 馬達初步設計 21 3.2.1 反電動勢常數與輸入電流 22 3.2.2 基本尺寸與槽極數 23 3.2.3 磁裝載設計 28 3.2.4 電裝載設計 30 3.2.5 繞線設計 30 3.2.6 定子幾何設計 31 3.2.7 確認馬達是否飽和與轉矩性能 33 3.3 適用於弱磁調速之設計 33 3.3.1 弱磁控制原理介紹 33 3.3.2 特徵電流匹配 38 3.3.3 徑向肋部對於特徵電流影響 40 第四章 抗退磁設計 44 4.1 模型初始架構 45 4.2 轉子抗退磁能力分析與設計 46 4.2.1 轉子幾何與抗退磁能力 46 4.2.2 磁導係數與磁通密度偏移比 52 4.2.3 近氣隙端磁障層設計 56 4.2.4 近軸端磁障層設計 66 第五章 實驗與模擬結果分析比較 73 5.1 原型機參數規格 73 5.2 原型機測試與模擬比較 76 5.2.1實驗規劃 76 5.2.2 模擬結果與實測比較 77 第六章 結論與未來展望 83 6.1 結論 83 6.2 未來研究建議 84 參考文獻 85

    [1] Cozy學生電動自行車/ KYMCO光陽機車/速克達。Available:https://www.kymco.com.tw/motor/cozy
    [2] EE Times Taiwan 電子工程專輯網 ,「開往更安全、更潔淨的未來之路」, 2018年4月。
    [3] T. Tokuda, M. Sanada and S. Morimoto, "Influence of Rotor Structure on Performance of Permanent Magnet Assisted Synchronous Reluctance Motor," in Proceeding of IEEE International Electrical Machines and Systems Conference, Tokyo, 2009, pp. 1-6.
    [4] X. Liu, H. Chen, J. Zhao and A. Belahcen, "Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3533-3545, June 2016.
    [5] T. H. Nguyen , "Design of 10kW Interior Permanent Magnet Motor for EV Traction," M.S. thesis, Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, July, 2016.
    [6] Lucio J. F. Cáceres, "Design and Optimization of a Permanent Magnet Traction Motor Using Cuckoo Search Algorithm, " M.S. thesis, Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, July, 2017.
    [7] R. F. Schiferl and T. A. Lipo, "Power Capability of Salient Pole Permanent Magnet Synchronous Motors in Variable Speed Drive Applications," IEEE Transactions on Industry Applications, vol. 26, pp. 115-123, 1990.
    [8] T. A. Huynh and M. F. Hsieh, "Comparative Study of PM-Assisted SynRM and IPMSM on Constant Power Speed Range for EV Applications," IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-6, November 2017.
    [9] G. J. Park, J. S. Kim, B. Son and S. Y. Jung, "Optimal Design of PMa-synRM for an Electric Propulsion System Considering Wide Operation Range and Demagnetization," IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1-4, April 2018.
    [10] C. L. Jeong and J. Hur, "Optimization Design of PMSM With Hybrid-Type Permanent Magnet Considering Irreversible Demagnetization," IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, November 2017.
    [11] M. Satoh, S. Kaneko, M. Tomita and S. Doki, "Study to Reduce the Amount of Magnetic Materials in IPM Motor which Focuses on the Rare Earth Magnet Usage and Demagnetization," in Proceeding of IEEE International Electrical Machines and Systems Conference,, Pattaya, 2015, pp. 195-199.
    [12] K. Imamura, M. Sanada, S. Morimoto and Y. Inoue, "Improvement of Demagnetization by Rotor Structure of IPMSM with Dy-Free Rare-Earth Magnet," in Proceeding of IEEE International Electrical Machines and Systems Conference, Sapporo, 2012.
    [13] Misumi. Magnet Characteristics, Available: https://tw.misumiec.com/ pdf/fa/2015/p2_313.pdf
    [14] J. H. Lee and B. I. Kwon, "Optimal Rotor Shape Design of a Concentrated Flux IPM-Type Motor for Improving Efficiency and Operation Range," IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2205-2208, May 2013
    [15] S. Musuroi, C. Sorandaru, M. Greconici, V. N. Olarescu and M. Weinman, "Low-Cost Ferrite Permanent Magnet Assisted Synchronous Reluctance Rotor an Alternative Solution for Rare Earth Permanent Magnet Synchronous Motors," in Proceeding of IEEE International Industrial Electronics Society Conference, Vienna, 2013, pp. 2966-2970.
    [16] R. Dutta, "A Segmented Interior Permanent Magnet Synchronous Machine with Wide Flux-Weakening Range, " Ph. D. dissertation, Electrical Engineering and Telecommunications, The University of New South Wales, January 2007.
    [17] 林展汐, 「基於組合磁極的一字型內置式永磁同步電機的研究」, 哈爾濱工業大學, 2015年6月。
    [18] K&J Magnetics, Inc. https://www.kjmagnetics.com/bhcurves.asp
    [19] J. Larminie and J. Lowry, Electric Vehicle Technology Explained, Oct 2003.
    [20] D. C. Hanselman, "Brushless Permanent Magnet Motor Design," Midpoint Trade Books Inc., 2003.
    [21] William Li,泛科學,Available:https://pansci.asia/archives/87008
    [22] H. Akita, Y. Nakahara, N. Miyake and T. Oikawa, "A New Core," IEEE Industry Applications Magazine, vol. 11, no. 6, pp. 38-43, Nov.-Dec. 2005.
    [23] Y. Nakahara, H. Ahita, N. Miyake, H. Kawaguchi, "Study on Manufacturing Technology of Middle and Small Sized Motors with Dividing Stator Cores," Journal of the Japan Society for Precision Engineering, Volume 67, Issue 3, Pages 456-460, 2001.
    [24] G. Choi and T. M. Jahns, "Post-Demagnetization Characteristics of Permanent Magnet Synchronous Machines," in Proceeding of IEEE International Energy Conversion Congress and Exposition, Montreal, QC, 2015, pp. 1781-1788.
    [25] H. R. Cha, "A Control of the MMF Space Harmonic Parasitic Torques in the Concentrated Winding AC Machine Using Skew Angle Optimization," in Proceeding of IEEE International Industrial Electronics, Paris, 2006, pp. 1018-1022.
    [26] H. Guldemir, K. J. Bradley , "The Effect of Rotor Design on Rotor Slot Harmonics in Induction Machines, " Electric Power Components and Systems, vol. 29, 2001 - Issue 9, Nov. 2010.
    [27] M. F. Hsieh and Y. S. Hsu, "An Investigation on Influence of Magnet Arc Shaping upon Back Electromotive Force Waveforms for Design of Permanent-Magnet Brushless Motors," IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3949-3951, Oct. 2005.
    [28] J. Cros and P. Viarouge, "Synthesis of High Performance PM Motors with Concentrated Windings," IEEE Transactions on Energy Conversion, vol. 17, no. 2, pp. 248-253, Jun. 2002.
    [29] A. M. EL-Refaie, M. R. Shah, R. Qu and J. M. Kern, "Effect of Number of Phases on Losses in Conducting Sleeves of Surface PM Machine Rotors Equipped With Fractional-Slot Concentrated Windings," IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1522-1532, Sept.-Oct. 2008.
    [30] F F. Magnussen and C. Sadarangani, "Winding Factors and Joule Losses of Permanent Magnet Machines with Concentrated Windings," in Proceeding of IEEE International Electric Machines and Drives Conference, 2003, pp. 333-339 vol.1.
    [31] L. Chong, "Design of an Interior Permanent Magnet Machine with Concentrated Windings for Field Weakening Applications, " Ph. D. dissertation, Electrical Engineering, The University of New South Wales, August, 2011.
    [32] H. Chen, R. Qu, J. Li and D. Li, "Demagnetization Performance of a 7 MW Interior Permanent Magnet Wind Generator With Fractional-Slot Concentrated Windings," IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
    [33] H. W. Lee, C. B. Park and B. S. Lee, "Performance comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding," IEEE Transportation on Electrification, Dearborn, MI, 2012, pp. 1-4.
    [34] T. A. Lipo, Introduction to AC Machine Design. Madison, WI, USA:Univ. Wisconsin–Madison, 2004, p. 547.
    [35] B. Boazzo, G. Pellegrino and A. Vagati, "Multipolar SPM Machines for Direct Drive Application:A Comprehensive Design Approach," in Proceeding of IEEE International Energy Conference, Florence, 2012, pp. 98-105.
    [36] Q. Zhao, Z. An, Z. Liu and R. Tang, "Analysis of Flux Leakage Coefficient of Permanent Magnet Synchronous Motors with U-shaped Magnets Rotor," in Proceeding of IEEE International Electrical Machines and Systems Conference, Beijing, China, 2003, pp. 56-58 vol.1.
    [37] S. J. Chapman, Electric Machinery Fundamentals, 5th ed., McGraw-Hill International Enterprises, LLC. Taiwan Branch, 2012.
    [38] B. Sneyers, D. W. Novotny and T. A. Lipo, "Field Weakening in Buried Permanent Magnet AC Motor Drives," IEEE Transactions on Industry Applications, vol. IA-21, no. 2, pp. 398-407, March 1985.
    [39] T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681-689, July 1987.
    [40] W. L. Soong and T. J. E. Miller, "Field-Weakening Performance of Brushless Synchronous AC Motor Drives," IEE Proceedings - Electric Power Applications, vol. 141, no. 6, pp. 331-340, Nov 1994.
    [41] Q. Liu, "Analysis, Design and Control of Permanent Magnet Synchronous Motors for Wide-Speed Operation, " Ph. D. dissertation, Department of Electrical Engineering, National University of Singapore, 2005.
    [42] P. Y. Lin, W. T. Lee, S. W. Chen, J. C. Hwang and Y. S. Lai, "Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor," in Proceeding of IEEE International Industrial Electronics Society Conference, Dallas, TX, 2014, pp. 668-674.

    無法下載圖示 校內:2023-07-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE