| 研究生: |
羅子涵 Lo, Zih-Han |
|---|---|
| 論文名稱: |
高介電常數有機/無機複合絕緣層氧化鋅薄膜電晶體製作與研究 Fabrication of ZnO Thin Film Transistor with High-k Organic-Inorganic Composite Dielectric |
| 指導教授: |
李文熙
Lee, Wen-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 薄膜電晶體 、氧化鋅 |
| 外文關鍵詞: | ZnO, TFT |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文用Poly(4-vinylphenol)以添加分散劑的方法,把奈米級氧化鈦(TiO2)加在PVP裡面,製成有機-無機混合複合絕緣層薄膜。此複合絕緣層薄膜成功把未添加奈米粉體的PVP從K值3.5提高到3.9,提升幅度達11%,並且還能保持10-9次方漏電流密度,擁有極佳的絕緣特性同時具有無機性(抗震、耐拉)與有機性(可塑、透明、可撓)的特性。
並利用氧化鋅薄膜應用於元件通道層,氧化鋅薄膜採用射頻濺鍍法成長,針對氧氣與氬氣比例、濺度功率、退火處理溫度等參數做調變。並做晶體結構、表面形態及電性量測等等分析,來決定何種氧化鋅薄膜條件有利於TFT元件製作。
本TFT為上閘極結構,氧化鋅薄膜在濺鍍功率300W、氧氣氛濃度10%,退火溫度250℃情況下,複合絕緣層添加TiO2粉體濃度為0.6 VOL%,製作出空乏型TFT元件。開關比(on/off ratio)約為4.63*105、載子移動率為0.43cm2/V.S,臨限電壓為-3.7V。
This study implemented using the method of the dispersing agent with Poly(4-vinylphenol) to generate organic-inorganic thin film insulator layer. Through the adding TiO2 into organic-inorganic thin film insulator layer, the k value increased from 3.5 to 3.9. Furthermore, this insulator layer hold the current density of 10-9 with the extremely characteristic of isolation such as shockproof, and bears pulls and the characteristic of organic along with plastic, transparent and flexible.
Applies the zinc oxide thin film in the thin film transistor channel layer . The zinc oxide thin film uses the RF sputter to growth . In view of parameters on oxygen and argon proportion, RF power, annealing treatment temperature makes the accent changes .Makes crystalline structure, surface morphology and electrical characteristic and so on analyzes, decided that what kind of zinc oxide thin film condition is advantageous to the TFT device manufacture.
This TFT was considered as top gate electrode model, which consisted of the zinc oxide thin film in RF power 300W, the oxygen density of 10%, the annealing temperature under 250℃. This TFT model generated the depletion TFT device. The ratio of switch on/off ratio is approximately 4.32*105, and carries mobility is 0.43 cm2/V.S, threshould voltage is -3.7V.
[1]A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors” , Synth. Met.88, 37 ~1997.
[2]H. E. Katz, J. Mater. Chem.,“Organic molecular solids as thin film transistor semiconductors” ,7, 369 ~1997.
[3]J.F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. So‥ lling, M.Giles, I. McCulloch, H. Sirringhaus, Chem. Mater. 16 (2004) 4772.
[4]K. Reynolds, S. Burns, M. Banach, T. Brown, K. Chalmers, N.Cousins, L. Creswell, M. Etchells, C. Hayton, K. Jacobs, A. Menon,C. Ramsdale,W. Reeves, J. Watts, T. von Werne, J. Mills, C. Curling, H. Sirringhaus, K. Amundson, M.D. McCreary, “A scalable manufacturing process for flexible active-matrix e-paper displays”,in: Proceedings of the 11th International Display Workshops (IDW ’04), 2004, p. 367.
[5]K.E. Paul, W.S. Wong, S.E. Ready, R.A. Street, “Additive jet printing of polymer thin-film transistors”,Appl. Phys. Lett. 83 (2003) 2070.
[6]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-ChannelOrganic Thin Film Transistors”, J. Am. Chem. Soc. 120, 207 ~1998.
[7]H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, “Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors: Structural Variation and Thiol-Enhanced Gold Contacts” ,J. Am. Chem. Soc. 122, 7787 ~2000.
[8]S. Masuda, K.Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties” , J. Appl. Phys. 2003, 93, 1624.
[9]R. L. Hoffman, B. J. Norris, J. F. wager,“ZnO-based transparent thin-film transistors” , Appl. Phys. Lett.2003, 82, 733.
[10]P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Appl. Phys. Lett. 2003, 82, 1117.
[11]J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohamki, Ohkubo, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. koinuma, H. Ohno, M. Kawasaki ,“High Mobility Thin Film Transistors with Transparent ZnO Channels”, Jpn. J. Appl. Phys. , Part 2 2003, 42, L347.
[12]H. S. Bae, J. H. Kim, S. Im, “Photodetecting properties of ZNO-based thin-film transistor” , Appl. Phys. Lett. 2003, 83, 5313.
[13]B. J. Norris, J. Anderson, J. F. Wager, D. A. Keszler,“Spin-coated zinc oxide transparent transistors” ,J. Phys. D: Appl. Phys. 2003, 36, L105.
[14]S. H. Jeong, B. S. Kim and B. T. Lee,“Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient”, Appl. Phys. Lett. 82 (2003) 2625.
[15]K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, J. H. Songand J. Y. Lee ,“Photoluminescence and heteroepitaxy of ZnO on sapphire (0001) grown by rf magnetron sputtering”,J. Vac. Sci. Technol. A 18 (2000) 2864.
[16]J. F. Muth, R. M. Kolbas, A. K. Sharama, S. Oktyabrsky and J.Narayan ,“Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition”, J. Appl. Phys. 85 (1999) 7884.
[17] R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Shrama and T. Venkatesan ,“High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for III–V nitrides”, Appl. Phys. Lett. 70 (1997) 2735.
[18] Kimoon Lee, Jae Hoon Kim, and Seongil Im ,“Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric”, Appl. Phys. Lett. 88, 023504 (2006)
[19]D. Redfield, Appl. Phys. Lett. 25(11) (1974) 634
[20]Langmuir,“The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths” ,Phys Rev. 33, 954 (1929)
[21]邱碧秀,“電子陶瓷材料” 徐氏基金會出版社p.112~114
[22]Yamazaki, T. Mitsuyu, and K. Wasa, IEEE Transactionson Sonics andUltrasonics, Vol.SU-27, No. 6 (1980) 369.
[23]R. Lohmann, E. Österschulze, K. Thoma and H. Gärtner, W. Herr, B.Matthes, E. Broszeit and K.-H. Kloos, “Analysis of rf-sputtered TiB2 hard coatings by means of X-ray diffractometry and Auger electron spectrosoopy”,Materials Science and Engineering, A139 (1991) 259.
[24]S. Takada, “Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering”,J. Appl. Phys. 73(10) (1993)4739.
[25]Y. E. Lee, J. B. Lee and H. J. Kim, “Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films”,J. Vac. Sci. Technol. A14, 1943 (1996).
[26]J. B. Lee, S. H. Kwak and H. J. Kim, “Effects of surface roughness of substrates on the c-axis preferred orientation of ZnO films deposited by r.f. magnetron sputtering”,Thin Solid Film 423, 262 (2003).
[27]E.M. Bachari, G. Baud, S. Ben Amor, M. Jacquet ,“Structural and optical properties of sputtered ZnO films”, Thin Solid Films 348 (1999) 165.
[28]X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue, H.Z. Zhuang, B.Y. Man ,“Annealing effect on the microstructure and photoluminescence of ZnO thin films”, Materials Chemistry and Physics 101 (2007) 285–290
[29]R. Kaltofen, G. Weise, “Influence of low-energy bombardment of an RF magnetron sputtering discharge on texture formation and stress in ZnO film” ,J. Nucl. Mater. 200 (1993) 375.
[30]R. Kaltofen, G. Weise, “Plasma diagnostic studies of low-energy ion bombardment in rf magnetron sputter deposition”, Surf. Coat. Technol. 74&75 (1995) 469
[31]P. Nunes, E.Fortunato and R. Martins,“Influence of the post –treatment on the properties of ZnO thin films” ,Thin Solid Films, Vol.383, p.277,2001