| 研究生: |
楊明桓 Yang, Ming-Huan |
|---|---|
| 論文名稱: |
室溫融鹽中電鍍銻化銦薄層之探討 Electrodeposition of Indium Antimonide in Air and Water-Stable Room Temperature Ionic Liquid |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 室溫離子液體 、電沈積 、銻化銦 、電化學 |
| 外文關鍵詞: | electrodeposition, Room Temperature Ionic Liquid, indium antimonide, electrochemistry |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中利用鎳、鎢、玻璃碳白金電極去探討銦及銻在鹼性1-ethyl-3-methylimidazolium chloride tetrafluroborate融鹽中電化學行為。In(Ⅲ)及Sb(Ⅲ) 於此融鹽中分別以[InCl5]2-及[SbCl4]-的配位形式存在。由循環伏安法及定電位電解法探討其電化學行為,結果顯示In(Ⅲ)及Sb(Ⅲ)可經由quasi-reversible reaction還原成元素態的In(0)及Sb(0)。以電位階升法探討In(0)及Sb(0)的成核現象,其於GC、W電極上的成核機制分別為瞬時成核及逐步成核。
在鹼性1-ethyl-3-methylimidazolium tetrafluroborate融鹽中
電沈積銻化銦,實驗中電沈積電位、溫度及濃度是重要的因素。在固定In(Ⅲ)及Sb(Ⅲ)濃度的條件下,隨著電位往負電位偏移,其鍍層中In(0)的含量逐漸增加,直至擴散控制電位後,鍍層中銦及銻的比例趨近於一定值,其值與融鹽中In(Ⅲ)及Sb(Ⅲ)的濃度比相同。銦/銻比例為1的鍍層可於[In(Ⅲ)]=[Sb(Ⅲ)]條件下被鍍得。於不同溫度下電沈積所得的鍍層以XRD分析,結果顯示於30oC~120oC下電鍍即皆得到具有晶型結構的銻化銦。
實驗所鍍得的銻化銦以IR吸收光譜及測量光電流的方式鑑定,結果顯示電沈積所得之銻化銦為P型半導體,而其flatband potential及 band gap為-0.84V, 0.17eV。
The electrodeposition of indium and antimony on polycrystalline tungsten, and neckel and on glassy carbon was investigated in the basic 1-ethyl-3-methylimidazolium chloride tetrafluroborate. In(Ⅲ) chloride and Sb(Ⅲ) chloride were complexed as [InCl5]2-and [SbCl4]- in this melts. In(Ⅲ) and Sb(Ⅲ) could be reduced to their elemental state via the quasi-reversible reduction. Analysis of the dimensionless chronoamperometric current-time transients indicated that the electrodeposition of indium on glassy carbon and tungsten involved instantaneous three-dimensional nucleation with diffusion-controlled growth, On the other hand antimony on these electrodes involved progressive three-dimensional nucleation.
Indium antimonide could be deposited in basic EMI-Cl-BF4 ionic liquid. The deposition potential, temperature, and concentrations of In(Ⅲ) and Sb(Ⅲ) were the important factors affecting the deposition results. The content of indium in the deposites increased as the deposition potential became more negative. Under the diffusion limited condition, the ratio of the In/Sb in the deposites were relatively constant and was close to the concentration ratio of In(Ⅲ) to Sb(Ⅲ) in the deposition solution. XRD showed that crystalline InSb could be obtained within a deposition temperature range between 30oC~120oC.
IR and photocurrent measurements showed that InSb codeposites were P-type semiconductor The flatband potential and the band gap were –0.87V, 0.17eV, respectively.
[1] G. Delarue, J. Electroanal. Chem., 1, 285(1959).
[2] J. M. Schafir and J. A. Plambeck, Can. J. Chem., 48, 2131(1970).
[3] L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc.: Electrochemical Science and technology, 120, 223(1973).
[4] I-W. Sun, A. G. Edwards and G. Mamantov, J. Electrochem. Soc., 140, 2733(1933).
[5] G. R. Stafford, J. Electrochem. Soc., 141, 945(1994).
[6] G. Mamantov, G.-S. Chen, H. Xiao, Y. Yang and E.Hondrogiannis, J.Electrochem. Soc., 142, 1758(1995).
[7] D. M. Gruen and R. L. Mcbth, Pure Appl. Chem., 6 23, (1963)
[8] J. Phillips and R. A. Osteryoung, J. Electrochem. Soc., 124, 1465(1977)
[9] M. J. Earle and K. R. Seddon, Pure and Applied Chemistry, 72, 1391(2000)
[10] F. H. Hurley and J. P. Wir, J. Electrochem. Soc., 98, 203 (1951).
[11] R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L. Hussey, J. Electrochem. Soc., 126, 1644(1979).
[12] J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 101 323(1979).
[13] J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 21, 1263(1982).
[14] E. I. Cooper and E. J. M. O’Sullivan, in “proceedings of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceeding”, PV 92-16, R.J. Gale, G. Blomgren and H. Kojima, Editor, pp. 386, J. Electrochem. Soc., Pennington, NJ(1992).
[15] J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Commun., 965(1992)
[16] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza and J. Dupont, Polyhedron, 15, 1217(1996).
[17] P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, Inorg. Chem., 35, 1168 (1996).
[18] R. J. Gale, B. Gilbert and R. A. Osteryoung, Inorg. Chem., 17, 2728(1978).
[19] R. J. Gale and R. A. Osteryoung, Inorg. Chem., 19, 2240(1980).
[20] J. L. Gray and G.E. Maciel, J. Am. Chem. Soc., 103, 7147(1981).
[21] R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J. Electrochem. Soc., 141,L73(1994).
[22] P. Y. Chen, I-W. Sun, Electrochim acta, 45, 19, 3163(2000).
[23] P. Y. Chen, I-W., Electrochim acta, 45, 3, 441(1999)
[24] 龔盈宇,砷化鎵電解析鍍層的特性分析,碩士論文,國立成功大學。
[25] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, Inc., Canada, 1(1985)
[26] 李世鴻,半導體工程原理,全威圖書有限公司,台北,1,1997。
[27] 李嗣涔、管傑雄、孫台平,半導體元件物理,三民書局,台北,1, 1995。
[28] B. G. Streetman, Solid State Electronic Device, Prentice Hall Inc., Canada, 56, 1995.
[29] G. Ziegler, Solid- State Electron., 6, 680(1963).
[30] J. K. Green, C. E. Wickersham, J. Appl, Phys., 47, 3930(1976).
[31] T. S. Rao, J. B. Webb, D. C. Houghton, J. M. Baribean, T.Moore, J. P. Noad, Appl. Phys. Lett., 53, 51(1988).
[32] H. H. Wieber, “Intermetallic Semiconducting Film”, Pergamon, Chap. 3, Oxford Press(1970).
[33] K. G. Guenther, H. Freller, Z. Naturforsch, Teil A., 16, 279(1961)
[34] M. Ohshita, J. Appl. Phys., 10, 1365(1971).
[35] H. H. Wieder, A. R. Clawson, Solid-State Electron., 8, 467(1965).
[36] H. H. Wieder, A. R. Clawson, Solid-State Electron., 10, 57(1967).
[37] N. F. Teed, Solid-State Electron., 10,1069 (1967).
[38] H. H. Wieder, Solid-State Electron., 9,373(1966).
[39] S. Baba, H. Honda, A. Kinbara, J. Appl. Phys., 49, 3632(1978).
[40] A. J. Noreika, J. Greggi, Jr, W. J. Takei, M. H. Fracombe, J. Vav. Sci. Technol., A1, 558(1983).
[41]G. M. Williams, C. R. Whitehous, C. F. McConville, A. G. Cullis, T. Ashiey, S. G. Courtney, C. T. Elliott, Appl. Phys. Lett., 53, 1189(1988)
[42]J. I. Chyi, S. Kalon, N. S. Kumar, C. W. Litton, H. Morkoc, Appl. Phys. Lett., 53, 1092(1988).
[43] P. K. Chiang, S. M. Bedair, J. Electrochem. Soc., 131, 773(1988).
[44] J. C. Chen, P. Bush, W. K. Chen, P. L. Lin, Appl. Phys., 53, 773(1988).
[45] J. N. Sadana, J. P. Sinhg, Plat. Surf. Fin., 12, 64(1985).
[46] M. Carpenter, M.Verbrugge, J. Mat. Res., 9, 2584(1994).
[47] A. Tevke, C. Besikci, C. V. Hoof, G. Borghs, Sol.-Stat. Electron., 42, 1039(1998).
[48] K. Zhu, J. Shi, L. Zhang, Sol. Stat. Commun., 107, 79(1998)
[49] J. Ortega, J. Herrero, J. Electrochem. Soc., 136, 3388(1989).
[50] A. J. Bard and L.R. Faulkner, “Electrochemical Methods; Fundamentals and Application”, John Wiely & Sons, New York(1980).
[51] W. M. MacNevin and B. B. Baker, Anal. Chem., 24, 986(1952).
[52] T. M. Laher, L. E. McCurry and G. Mamantov, Anal. Chem., 57, 500(1985).
[53] R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, “Instrumental Methods in Electrochemistry”, John Wiely & Sons, New York (1985).
[54] D. Pletcher, “ A First Course in Electrode Processes”, The Electrochemical Consultancy, England(1991).
[55] G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 225(1982).
[56] P. Allongue and E. Souteyrand, J. Electroanal. Chem., 286, 217(1990).
[57] G. Trejo, A.F. Gil and I. Gonzalez, J. Appl. Chem., 26, 1287(1996).
[58] G. Trejo, R. Ortega B., Y. Meas V., P. Ozil, E. Chainet and B. Nguyen, J. Electrochem. Soc., 145, 4090(1998).
[59] C. L. Hussey and X. Xu, J. Electrochem. Soc., 138, 1886(1991).
[60] Y.-F. Lin and I-W. Sun, J. Electrochem. Soc., 146, 1054(1999).
[61] M. Avrami, J. Chem. Phys., 7, 1103(1939).
[62] B. Scharifker and G. Hills, Electrochim. Acta, 28, 879(1983).
[63] A. K. Abdul-Sada, A. G. Avent, M. J. Parkington, T. A. Ryan, K. R. Seddon and T. Welton, J. Chem. Soc., Chem. Commun., 1643(1987).
[64] J. R. Sanders, in “An Investigations of Transport Properties and Ion Association in Room Temperature Haloaluminate Molten Salt”, Ph. D.Dissertation, The University of Mississippi(1987).
[65] C. L. Hussey, I-W. Sun, P. A. Barnard,J. Electrochem. Soc., 137, 8, 2515(1990).
[66] M. Lipsztajn,; R. A. Osteryoung., J. Inorg. Chem., 24, 21,3492(1992)
[67] D. A. Habboush, R. A. Osteryoung, Inorg. Chem. 23, 12, 1726(1984)