簡易檢索 / 詳目顯示

研究生: 王文琪
Wang, Wen-Chi
論文名稱: 基於自適應性脈衝放電法回收廢棄鉛酸電池剩餘能量之研究
Study on Extracting Residual Energy from Discarded Lead-Acid Batteries based on Self-Adaptive Pulse Discharge Method
指導教授: 李建興
Lee, Chien-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 鉛酸電池能量回收自適應性脈衝放電法
外文關鍵詞: lead-acid battery, energy recovery, self-adaptive pulse discharging method
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣一年廢棄鉛酸電池的回收量高達六萬五千公噸,且近年來回收量有向上攀升的趨勢,為了避免電池中剩餘能量浪費,同時能在廢棄鉛酸電池於材料回收作業前獲取額外的能量收益,用以增加其回收價值。本論文針對廢棄鉛酸電池設計剩餘能量萃取機制,其結合並聯電池組間的放電平衡機制與自適應性脈衝放電方法,並經降壓轉換器將廢棄鉛酸電池的剩餘能量萃取儲存至鋰離子電池組中。並聯平衡機制能使電池達到同步放電的效果,用以避免電池間相互充放電,進而減少因電池不一致性所產生的充放電能量傳遞損耗。而自適應性脈衝放電方法可提供廢棄鉛酸電池週期性的靜置時間,電池中的電解液可於靜置時擴散均勻,此可降低廢棄鉛酸電池內電阻上升的速度,進而提升放電能量。此外,再透過平均放電電流值篩選出隨著電池狀態改變的最佳脈衝放電頻率與責任週期,用以優化脈衝放電對廢棄鉛酸電池剩餘能量的萃取。論文中吾人探討所需的放電機制參數,例如:搜索時的電流篩選基準、放電責任週期間距選擇、搜索時間設定等參數,並逐步進行放電機制的改善,所得剩餘能量萃電效率約為78.70%,加入恢復效應每次15分鐘,經三次鬆弛後,萃電效率上升至80.89%。相較於未使用脈衝放電以及使用固定頻率與責任週期的脈衝放電方法,本文所提方法分別可提升8.87%及5.91%的能量萃電效率。

    In order to avoid wasting the residual energy in discarded lead-acid batteries and to increase their recycling value, this thesis focuses on designing a mechanism to extract residual energy from discarded lead-acid batteries. The proposed mechanism combines a balancing method in parallel-connected batteries with a self-adaptive pulse discharging strategy via a buck converter to extract residual energy from discarded lead-acid batteries and the extracted energy is stored into a li-ion battery pack. The balancing circuit regulates the discharge of the battery cell charge evenly that the discharging and charging between cells are mutually exclusive in order to reduce the energy loss caused by cell inconsistency. The self-adaptive pulse discharging strategy provides periodic resting time for the discarded lead-acid batteries, allowing the electrolyte to diffuse uniformly during the resting. It reduces the growth of the internal resistance rate in the discarded lead-acid batteries and improves the discharge energy. Furthermore, the optimal pulse discharge frequency and duty cycle that change with the battery state are selected by different averaging discharge current values, optimizing the fixed-frequency and fix-duty-cycle pulse discharging. It makes the discarded lead-acid batteries to be extracted in optimal state. This thesis also discusses the improvement of discharge mechanism parameters required by the mechanism, such as the current selecting criterion during searching, the selection of discharge duty cycle interval, and the setting of search time. Finally, the experimental extraction efficiency of the remaining energy from discarded lead-acid batteries using the proposed mechanism was about 78.70% and it increased up to 80.89% after considering the recovery effect for a 15-min relaxation per time with three times. Compared to the discharge current without a pulse modulation and with the fixed frequency and duty cycle, the energy extraction efficiency using the proposed method can be improved by 8.87% and 5.91% respectively.

    摘要 i 致謝 vii 目錄 viii 表目錄 xi 圖目錄 xiii 符號說明 xv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方向 2 1.3 文獻回顧 3 1.4 本論文貢獻 6 1.5 論文架構 7 第二章 鉛酸電池特性介紹 8 2.1 常用名詞解釋 8 2.2 二次電池簡介 10 2.3 二次電池種類 11 2.3.1 鉛酸電池 11 2.3.2 鎳鎘電池 11 2.3.3 鎳氫電池 12 2.3.4 鋰離子電池 12 2.4 鉛酸電池放電特性與方法 13 2.4.1 恆定功率放電 13 2.4.2 恆定電流放電 14 2.4.3 脈衝放電 14 第三章 剩餘能量萃取機制簡介 15 3.1 主動式平衡電路改良 15 3.2 廢棄鉛酸電池剩餘能量萃取之放電方法 16 3.2.1 定頻脈衝放電 17 3.2.2 變頻脈衝放電 18 3.2.3 能量萃取系統之自適應性脈衝放電 18 3.3 電路配置 20 3.3.1 降壓轉換模組 21 3.3.2 微電腦控制端 22 3.3.3 電源供應端 25 3.4 程式運行 26 3.4.1 平衡控制 26 3.4.2 最佳頻率及放電責任週期搜索 28 3.4.3 截止條件設定 28 第四章 剩餘能量萃取機制之設計 31 4.1 實驗配置 31 4.2 前置測試 33 4.2.1 廢棄鉛酸電池於不同健康度和剩餘電量之能量萃取測試 33 4.2.2 廢棄鉛酸電池剩餘能量估測 37 4.2.3 鉛酸電池剩餘能量萃取模擬 39 4.3 不同放電法萃取單顆鉛酸電池剩餘能量之測試 41 4.4 LTP250 工作電壓選擇 43 4.5 自適應性脈衝放電法之頻率與責任週期範圍選擇 44 4.6 搜索方法之電流與責任週期間距選擇 49 4.7 最佳頻率及責任週期方法之搜索時間選擇 54 4.8 能量萃取方法平衡機制之測試 56 4.9 恢復效應於萃電效率之測試 57 第五章 廢棄鉛酸電池剩餘能量萃取之實驗結果 60 5.1 電路運作結果 60 5.2 程式運行結果 62 5.3 兩顆電池並聯萃電之實驗結果 66 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71 參考文獻 72

    [1] TechNavio (Infiniti Research Ltd), “Automotive lead-acid battery market by application, vehicle type and geography - forecast and analysis 2023-2027,” December 2022.
    [2] 行政院環保署,環境資源資料庫(Data of retrieval: May, 2023) : https://data.epa.gov.tw/dataset/detail/WR_P_223
    [3] “IEEE Std 450-2020 - IEEE recommended practice for maintenance, testing, and replacement of vented lead-acid batteries for stationary applications,” (Revision of IEEE Std 450-2010), pp.1-115, March 2021.
    [4] 郭育菁,“車用鉛蓄電池之回收與再利用研究”,國立中央大學工業管理研究所,碩士論文,民國106年6月。
    [5] 王同清,“廢棄電池剩餘電能回收系統之設計與實現”,台北城市科技大學機械工程系機電整合碩士班,碩士論文,民國107年6月。
    [6] C. -S. Cheng, W. -H. Lau, N. K. Rathi and S. -H. Chung, “Extraction of intrinsic parameters of lead–acid batteries using energy recycling technique,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4765-4779, May 2019.
    [7] 許良明、黃旺根,“汽車學,汽車電學篇”,新北市,台科大圖書,2011。
    [8] J. Yang, C. Hu, H. Wang, K. Yang, J.B. Liu and H. Yan “Review on the research of failure modes and mechanism for lead–acid batteries,” International Journal of Energy Research, vol. 41, no. 3, pp. 336-352, March 2017.
    [9] 台灣杰士電池,密閉鉛蓄電池技術手冊(Data of retrieval: May, 2023) : https://www.gs-battery.com.tw/knowhow-technicalmanual-5.php#top
    [10] A. -I. Stan, M. Swierczynski, D. -I. Stroe, R. Teodorescu, S. J. Andreasen and K. Moth, “A comparative study of lithium ion to lead acid batteries for use in UPS applications,” IEEE 36th International Telecommunications Energy Conference, Vancouver, BC, Canada, September 28- October 4, 2014.
    [11] M. Coleman, C. K. Lee, C. Zhu and W. G. Hurley, “State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2550-2557, October 2007.
    [12] G. Piłatowicz, A. Marongiu, J. Drillkens, P. Sinhuber and D. U. Sauer, “A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples,” Journal of Power Sources, vol. 296, pp. 365-376, July 2015.
    [13] Y. Shi, C. Ferone, C. Rao and C. D. Rahn, “Nondestructive forensic pathology of lead-acid batteries,” American Control Conference, Montreal, QC, Canada, June 27-29, 2012.
    [14] A. C. -C. Hua and B. Z. -W. Syue, “Charge and discharge characteristics of lead-acid battery and LiFePO4 battery,” International Power Electronics Conference - ECCE ASIA -, Sapporo, Japan, pp. 1478-1483, June 21-24, 2010.
    [15] 林昱超,“鉛酸電池之間些放電態樣研究”,國立中山大學電機工程學系,碩士論文,民國96年6月。
    [16] S. Schilling, “Ensuring lead-acid battery performance with pulse technology,” Fourteenth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, January 12-15, 1999.
    [17] W. Jamratnaw, “Desulfation of lead-acid battery by high frequency pulse,” 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phuket, Thailand, June 27-30, 2017.
    [18] L. -R. Chen, S. -L. Wu, D. -T. Shieh and T. -R. Chen, “Sinusoidal-ripple-current charging strategy and optimal charging frequency study for li-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 88-97, January 2013.
    [19] L. -R. Chen, J. -J. Chen, C. -M. Ho and S. -L. Wu, “Study of the optimal pulse current discharging frequency of the Li-ion battery,” IEEE Third International Conference on Sustainable Energy Technologies, Kathmandu, Nepal, September 24-27, 2012.
    [20] L. -R. Chen, J. -J. Chen, C. -M. Ho, S. -L. Wu and D. -T. Shieh, “Improvement of Li-ion battery discharging performance by pulse and sinusoidal current strategies,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5620-5628, December 2013.
    [21] L. -R. Chen, “Design of duty-varied voltage pulse charger for improving li-ion battery-charging response,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480-487, February 2009.
    [22] L. -R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398-405, February 2007.
    [23] S. Sirisukprasert and S. M. I. Niroshana, “An adaptive pulse charging algorithm for lithium batteries,” 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phuket, Thailand, June 27-30, 2017.
    [24] X. Gong, R. Xiong and C. C. Mi, “Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1872-1879, March-April 2015.
    [25] 鄭翔文,“基於自適應性脈波放電法回收一次性廢棄電池剩餘電量的實現”,國立成功大學系統及船舶機電工程學系,碩士論文,民國109年7月。
    [26] 任尉廷,“基於自適應性脈波放電法回收廢棄鋰離子電池剩餘能量的研究”,國立成功大學系統及船舶機電工程學系,碩士論文,民國110年7月。
    [27] C.-H. Lee, H.-W. Cheng, B.-W. Liao and J.-A. Jiang, “An approach to recover energy from discarded primary batteries before being disassembled,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6247-6257, June 2022.
    [28] 陳怡萍, “鉛酸與鋰離子蓄電池之電量估測”, 國立中山大學電機工程學系,碩士論文,民國96年6月。
    [29] 林奎佑,“考慮切換機制之四階段定電流充電法對電池具不同初始電量的分析”,國立成功大學系統與船舶機電工程學系,碩士論文,民國111年7月。

    無法下載圖示 校內:2028-08-25公開
    校外:2028-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE