簡易檢索 / 詳目顯示

研究生: 李喆龍
Lee, Che-Lung
論文名稱: 高效能無金屬釕基染料敏化太陽能電池
High Efficiency of Dye-Sensitized Solar Cells Based on Ruthenium and Metal-Free Dyes
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 81
中文關鍵詞: N719染料敏化電池
外文關鍵詞: N719, dye-sensitized photoelectric
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功的開發出triazolo-isoquinoline系列染料,其中4L具有優越的光電轉換性質,它成功的補足了有機金屬染料在近紫外光區吸收不足的部分。我們利用4L與N719共吸附,成功的讓染料敏化電池元件光電轉換效率由4.49%提升至5.15%,整體提升了約15%的轉換效率。
    當以純N719元件(使用八層Mesoporous與四層scattering)為標準組時,分別調控N719與4L的比例來觀察4L在近紫外光區所彰顯的光電效應,可觀察到若以純4L當敏化劑的效果並不太好,只有1.14%的光電轉換效率,最主要的原因應該是它的吸光範圍不夠大,使得短路電流只有3.25(mA/cm2) 而且此結構特性的關係使得染料分子的電位與I-/I3- 之間的電位差變小,所以Voc下降至0.58V,造成FF變差,η也跟隨下降。
    此時N719和4L共吸附條件比例為4:1的時候,我們可以觀察到元件的開路電壓因為4L的共吸附使得電位被拉扯稍微下降為0.7V,但是因為4L彌補了N719在近紫外光區吸收不足的部分,所以使得短路電流增加上升到10.68(mA/cm2) ,因此造成了使用純N719為元件的光電轉換效率由原來的4.49%提升到N719和4L比例為4:1時候的5.15%,整體效率提升了約15%,N719在350-500mm的IPCE值約40%左右,在添加了4L之後可見到整個350-500mm的IPCE值提升到65%左右,這也是元件N719和4L比例為4:1的時候的轉換效率比元件純N719時還要高的原因。
    我們也調控N719與4L的濃度比為1:1的共吸附條件,因為4L的吸附量大幅增加,造成Voc下降幅度比N719和4L比例為4:1的時候劇烈為0.67V,所以轉換效率比純N719元件來的差只有4.31%, IPCE值在350-500mm區間雖然被大幅提升到82%,但是在550-750mm之間的吸收卻是下降的,這也代表N719的吸附是比較少的,這也是造成轉換效率比純N719元件與N719和4L比例為4:1的時候來的差的原因。
    我們成功的合成了4L,在實驗過程中雖然發現相似物4RL吸收光譜較紅位移,但因為轉換效率較低而且與N719吸收光譜的重疊性較大,所以我們選擇4L和N719進行共敏化實驗,在莫耳農度4:1的條件下,元件光電轉換效應可達5.15%,這歸功於4L在近紫外光區的吸附被彰顯的結果,此結果也為未來的染料設計提供了方向。

    A Triazolo- isoquinoline series dye which has an excellent photoelectric conversion 4L nature has been invented. It complements the deficiency of organometallic dye absorption in the UV region. A total of 4L and N719 absorption were used had improved the dye-sensitized photoelectric conversion efficiency from 4.49% to 5.15%. The overall conversion efficiency had actually increased of about 15%
    By using the pure component N719 that analyzed using eight Mesoporous with four scattering as the cablibration standard, the ratio of N719 with 4L was control to observe the photoelectric effect of 4L near the ultra-violet region.
    The pure 4L showed weak sensitizer effect, with only 1.14% photoelectric conversion efficiency reached. Main causes of this result was, firstly, the narrow absorption range that made short-circuit current only obtained 3.25 (mA/cm2) and, secondly, the chemical structural characteristics of this relationship decrease the difference between the dye molecule's potential and I-/I3- potential d, and resulted a decrease of Voc down to 0.58V, deterioration of FF, also followed by the decline of η.
    When the ratio of N719 and 4L would be 4:1, resulted a potential drop in 4L to 0.7V that caused by the absorption conditions happened in open circuit voltage, in the same time, as the presence of 4L has solved the absorption problem of N719 near ultraviolet region , the short-circuit current is increased up to 10.68 (mA/cm2). This result also improve the the overall efficiency of about 15%, where the photoelectric conversion efficiency increase from pure N719, 4.49% into N719 with 4L of absorption, 5.15%. Consequently, IPCE spectrum showed an IPCE value of about 40% for N719 in the 350-500mm, but after 4L was adding in, IPCE value raised to 65% .This could explain why N719 with 4L of absorption has greater conversion efficiency compare to pure N719.
    Besides, the concentration of N719 and 4L were controlled into absorption conditions ratio 1:1. The 4L obtained a substantial increase in the absorption capacity which, resulting in severe decline of Voc value 0.67V compare to the ratio of N719 and 4L would be 4:1. Hence, the conversion efficiency was even weaker, than pure N719, only 4.31% obtained. Moreover, showed an increase of IPCE values in the range of 350-500mm,way up to 82%, but absorption decreased when it is in the range of 550-750mm, this indicates that N719 has weak absorption on N719 and 4L were controlled into absorption conditions ratio 1:1, where conversion efficiency of N719 and 4L absorption conditions ratio 1:1 are the weakest if were to compare to pure 4L and the ratio of N719 and 4L would be 4:1.
    In short, 4L was synthesized successfully. Although there is a red shift found in 4RL absorption spectrum, the conversion efficiency of 4RL is still low, and N719 has greater overlapping in absorption spectra . This so the reason that 4L and N719 were chosen in this sensitized experiment, in 4:1 molar degree agricultural conditions, the overall effect of photoelectric conversion could reach 5.15% due to the great absorption properties of 4L in the near-UV region. This finding also provides a new design direction in dye industry for the future.

    摘要....................................................III Abstract................................................V Acknowledgement.........................................VIII Contents................................................X Table Captions..........................................XII Figure Captions.........................................XIII Chapter 1 Introduction............................................1 Chapter 2 Theory..................................................3 2-1 Theory of Operation for Dye Sensitized Solar Cells.3 2-2 Properties of TiO2 Nanoparticles...................4 2-3 Characterization of Photovoltaics..................11 2-4 Power Conversion Efficiency of a Dye-Sensitized Solar Cell....................................................15 Chapter 3 Triazoloisoquinoline-based dual functional dyestuff for dye-sensitized solar cells.................22 3-1 Introduction.......................................22 3-2 Experimental Procedures............................23 3-2-1 General procedure for preparation of solar cells.23 3-2-2 Photovoltaic measurement.........................25 3-2-3 Dye loading measurement..........................25 3-2-4 Synthesis........................................26 3-3 Results and Discussion.............................28 3-3-1 Synthesis........................................28 3-3-2 The double-layer TiO2 film.......................29 3-3-3 The concentration effect of co-adsorbents........32 Chapter 4 Co-sensitization effect of organic/inorganic sensitizer on TiO2 electrode............................37 4-1 Introduction.......................................37 4-2 Experimental.......................................38 4-2-1 General Information and Materials................38 4-2-2 Synthesis........................................39 4-3 Fabrication of photovoltaic devices................42 4-4 Photovoltaic measurement...........................42 4-5 Results and discussion.............................43 Chapter 5 StSt/TiO2 compact layer/TiO2 triple-layered conducting substrates for large active area dye-sensitized solar cells.............................................54 5-1 Introduction.......................................54 5-2 Experimental.......................................56 5-2-1 Materials and Reagents...........................56 5-2-2 TiO2 organic sol preparation.....................56 5-2-3 Cell fabrication.................................57 5-2-4 Photovoltaic measurements........................59 5-3 Results and Discussion.............................60 5-3-1 Effect of the TiO2 compact layer.................60 5-3-2 Effect of the different cell geometry in StSt DSSC65 5-3-3 Effect of the parameters RP and RS...............68 Chapter 4 Conclusions..................................72 References..............................................74

    1.  B. O’Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 13, 737 (1991).
    2.  M. Gratzel: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A. 164, 3 (2004).
    3.  J. N. De Freitas, A. F. Nogueira and M. A. De Paoli: New insights into dye-sensitized solar cells with polymer electrolytes. J. Mater. Chem. 19, 5279 (2009).
    4.  M. Gorlov, L. Kloo: Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans. 2008, 2655 (2008).
    5.  B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells, 90, 549 (2006).
    6.  M. K. Nazeeruddin, A. Kay, I. Rodicio and M. Gratzel: Conversion of light to electricity by cis-X2B(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382 (1993).
    7.  H. Paulsson, A. Hagfeldt and L. Kloo: Molten and solid trialkylsulfonium iodides and their polyiodides as electrolytes in dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B. 107, 13665 (2003).
    8.  J. H. Yum, P. Walter, S. Huber, D. Rentsch, T. Gieger, F. Nuesch, F. D. Angelis, M. Gratzel and M. K. Nazeeruddin: Efficient far red sensitization of nanocrystalline tio2 films by an unsymmetrical squaraine dye. J. Am. Chem. Soc. 129, 10320 (2007).
    9.  H. Tian, X. Yang, J. Cong, R. Chen, J. Liu, Y. Hao, A. Hagfeldt and L. Sun: Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chem. Commun. 2009, 6288 (2009).
    10.  S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy and M. Gratzel: High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 2008, 5194 (2008).
    11.  J. C. Chang, C. H. Yang, H. H. Yang, M. L. Hsueh, W. Y. Ho, J. Y. Chang, I. W. Sun: Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells. Solar Energy. 85, 174 (2011).
    12.  H. Kusama and H. Arakawa: Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell. J. Photochem. Photobiol. A: Chem. 160, 171 (2003).
    13.  S. Ruhle, M. Greenstein, S. G. Chen, A. Merson, H. Pizem, C. S. Sukenik, D. Cahen and A. Zaban: Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B. 109, 18907 (2005).
    14.  M. Wang, C. Gratzel, S. J. Moon, R. Humphry-Baker, N. Rossier-Iten, S. M. Zakeeruddin and M. Gratzel: Surface design in solid-state dye sensitized solar cells: effects of zwitterionic co-adsorbents on photovoltaic performance. Adv. Funct. Mater. 19, 2163 (2009).
    15.  Wikipedia.org (May 2006), “Photosynthesis” [Online], http://en.wikipedia.org/wiki/Photosynthesis, accessed on March 28, 2006
    16.  Michael Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry (2004), 164, pp. 3–14
    17.  S.D. Burnside, V. Shklover, C. Barbé, P Comte, F. Ardense, K. Brooks and M. Grätzel, Self Organization of TiO2 Nanoparticles in Thin Films , Chem. Mater. 1998, 10, pp. 2419-2425.
    18.  Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese and Craig A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Letters (2006), Vol. 6, No. 2, pp. 215-218
    19.  J. C. Bernede, Journal of the Chilean Chemical Society 53, 1549 (2008).
    20.  A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Applied Physics Letters 90 (2007).
    21.  Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M., J. Am. Chem. Soc. 1988, 110, 1216-1220.
    22.  Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Science 2011, 334, 629-634.
    23.  Gratzel, M., Nature 2001, 414, 338-344.
    24.  Blankenship, R. E., Molecular Mechanisms of Photosynthesis. Blackwell Science: 2002.
    25.  Barber, J., Chemical Society Reviews 2009, 38, 185-196.
    26.  Y. M. Lin, S. L. Liu and Y. H. Tseng: Photocatalytic titanium oxide solution and method for producing the same. TWI230690 (2005).
    27.  C. Y. Chiu, C. N. Kuo, W. F. Kuo and M. Y. Yeh: Studies on the reaction of α-chlororformylarylhydrazine hydrochloride with N-heterocyclic comounds. J. Chin. Chem. Soc. 49, 239 (2002).
    28.  S. Hore, C. Vetter, R. Kern, H. Smit and A. Hinsch: Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 90, 1176 (2006).
    29.  S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films. 516, 4613 (2008).
    30.  P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smith, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen: Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. J. Phys. Chem. B. 110, 19191 (2006).
    31.  M. S. Wu, C. H. Tsai, J. J. Jow and T. C. Wei: Enhanced performance of dye-sensitized solar cell via surface modification of mesoporous TiO2 photoanode with electrodeposited thin TiO2 layer. Electrochimica Acta. 56, 8906 (2011).
    32.  X. F. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao, H. Zhou and S. Sasaki: Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Langmuir. 26, 6320 (2010).
    33.  F. Gao, Y. Cheng, Q. Yu, S. Liu, D. Shi, Y. Li and P. Wang: Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg. Chem. 48, 2664 (2009).
    34.  B. O’Regan and M. Gratzel, Nature, 1991, 353, 737.
    35.  M. Gratzel, J. Photochem. Photobiol. A, 2004, 164, 3.
    36.  P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 2005, 127, 808.
    37.  J. He, W. Wu, J. Hua, Y. Jiang, S. Qu, J. Li, Y. Long and H. Tian, J. Mater. Chem., 2011, 21, 6054.
    38.  Y. Numata, I. Ashraful, Y. Shirai and L. Han, Chem. Commun., 2011, 47, 6159.
    39.  L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and A. I. Tsai, J. Org. Chem., 2010, 75, 4778.
    40.  Q. Miao, L. Wu, J. Cui, M. Huang and T. Ma, Adv. Mater. 2011, 23, 2764.
    41.  J. H. Yum, S. R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko, M. Grätzel, and M. K. Nazeeruddin, Chem. Commun., 2007, 4680.
    42.  Y. Hong, J. Liao, D. Cao, X. Zang, D. Kuang, L. Wang, H. Meier, and C. Su, J. Org. Chem., 2011, 76, 8015.
    43.  V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Adv. Funct. Mater., 2006, 16, 2016.
    44.  S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and J. Roncali, J. Am. Chem. Soc., 2006, 128, 3459.
    45.  D. Kunag, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc., 2006, 128, 4146.
    46.  D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt and L. Sun, Chem. Commun., 2006, 2245.
    47.  S. T. Huang, Y. C. Hsu, Y. S. Yen, H. H. Chou, J. T. Lin, C. W. Chang, C. P. Hsu, C. Tsai and D. J. Yin, J. Phys. Chem. C, 2008, 112, 19739.
    48.  Q. Li, J. Shi, H. Li, S. Li, C. Zhong, F. Guo, M. Peng, J. Hua, J. Qin and Z. Li, J. Mater. Chem., 2012, 22, 6689.
    49.  S. Qu, B. Wang, F. Guo, J. Li, W. Wu, C. Kong, Y. Long and J. Hua, Dyes and Pigments, 2012, 92, 1384.
    50.  B. Liu, W. Zhu, Q. Zhang, W. Wu, M. Xu, Z. Ning, Y. Xie and H. Tian, Chem. Commun., 2009, 1766.
    51.  A. Mishra, N. Pootrakulchote, M. K. R. Fischer, C. Klein, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Bauerle and M. Gratzel, Chem. Commun., 2009, 7146.
    52.  A. F. Nogueira, J. R. Durrant and M. A. De Paoli, Adv. Mater., 2001, 13, 826.
    53.  T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, Nano Lett., 2002, 2, 1259.
    54.  M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, and K. J. Kim, Sol. Energy Mater. Sol. Cells, 2006, 90, 574.
    55.  Y. Jun, J. Kim, and M. G. Kang, Sol. Energy Mater. Sol. Cells, 2007, 91, 779.
    56.  H. G. Yun, Y. Jun, J. Kim, B. S. Bae, and M. G. Kang, Appl. Phys. Lett., 2008, 93, 133311.
    57.  J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee, and M. G. Kang, J. Electrochem. Soc., 2008, 155, F145.
    58.  W. I. Jeong, J. Lee, S. Y. Park, J. W. Kang, and J. J. Kim, Adv. Funct. Mater., 2011, 21, 343.
    59.  S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, M. Gratzel, Thin Solid Films, 2008, 516, 4613.
    60.  B.C. O’Regan, S. Scully, A.C. Mayer, E. Palomares, J. Durrant, J. Phys. Chem. B, 2005, 109, 4616.
    61.  H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, J. Phys. Chem. C, 2009, 113, 16277.
    62.  T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagi and H. Arakawa, Sol. Energy Mater. Sol. Cells, 2010, 94, 812.
    63.  M. Yamaguchi, The past and present, in: M. D. Archer, R. Hill (Eds.), Clean
    electricity from photovoltaics, London: Imperial College Press, 2001, p. 60.
    64.  J. D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, Adv. Funct. Mater., 2005, 15, 10.
    65.  S. Choi, W. J. Potscavage, and B. Kippelen, J. Appl. Phys., 2009, 106, 054507.

    無法下載圖示 校內:2020-02-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE