| 研究生: |
翁瑞陽 Weng, Rui-Yang |
|---|---|
| 論文名稱: |
提升電池壽命之車用超電容輔助儲能系統研製 Development of Supercapacitor-assisted Energy Storage System for Electric Vehicle to Improve Battery Life Cycle |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 共同指導教授: |
白富升
Pai, Fu-Sheng 胡家勝 Hu, Jia-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 混合儲能系統 、鋰離子電池 、超電容 |
| 外文關鍵詞: | Hybrid Energy Storage System, Lithium-ion battery, Supercapacitor |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文考量鋰電池在電動車輛操作期間頻繁的深度充放電,間接影響電池模組溫度的上升。若長時間高溫的環境,電池的壽命會明顯減少。本研究提出一磷酸鋰鐵電池與超級電容之雙電源驅動系統,以鋰離子電池作為主要的能量來源,並善用超級電容能瞬間提供高功率的特性來輔助主電源。藉由控制超電容放電電流,來分配主電池能量輸出,使驅動器在馬達啟動及負載變化時,電池操作於不致於快速衰減壽命的電流。透過超電容削峰填谷之效用,延長電動車載電池循環壽命。透過Simulink程式模擬,在ECE40行車型態操作下,本論文提出之超電容輔助儲能系統預估能延長電動機車鋰電池一年半的壽命。
Lithium-ion batteries have the limitation and require frequent charging and discharging during vehicle operation, which would cause the temperature of battery pack rising high. Accordingly, cycle life of the battery pack will reduce significantly when operating in high temperature environment.
This thesis proposes a hybrid energy storage system (HESS) composed of lithium-ion batteries and supercapacitors (SCs) for electric vehicle applications. In the proposed HESS, lithium-ion batteries acts as the main energy source, and supercapacitors, as a high dynamic and high power density device, functions to supply transient power demand. To improve battery cycle life, supercapacitor utilized to harvest energy generated from electric motor while regenerative braking by appropriate switching of the DC/DC converter. Implementing current control on DC/DC converter, which distribute the current flow between batteries and SCs, can prevent battery pack from life-harming condition. With the proposed method, the harvested energy can be used when starting or accelerating the electric vehicle and furthermore prolong lifespan of battery.
[1] 中華民國行政院, “空氣污染防制行動方案”, Available from: https://www.ey.gov.tw/Page/53AE96C4D8CF9362
[2] P. Thounthong, S. Rael, and B. Davat, "Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications". Journal of Power Sources, Vol. 193(1), p. 376-385, 2009.
[3] C. Jian and A. Emadi, "A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles". IEEE Transactions on Power Electronics, Vol. 27(1), p. 122-132, 2012.
[4] R. Carter, A. Cruden, and P.J. Hall, "Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle". IEEE Transactions on Vehicular Technology, Vol. 61(4), p. 1526-1533, 2012.
[5] M.E. Ortúzar, Design, implementation and evaluation of an auxiliary energy system for electric vehicles, based on ultracapacitors and buck-boost converter, PhD Thesis, Department of Electrical Engineering, Pontificia Universidad Católica de Chile, 2005.
[6] J. Dixon and M. Ortúzar. "Tests results with regenerative braking based on ultracapacitors and a Buck-Boost Converter". in Proc. 18th Elect. Veh. Symp. 2001.
[7] J. Moreno, M.E. Ortuzar, and J.W. Dixon, "Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks". IEEE Transactions on Industrial Electronics, Vol. 53(2), p. 614-623, 2006.
[8] F. Brucchi, F.G. Capponi, F. Smargiasse, and P. Santoro. "High efficiency-low cost powertrain for urban electric vehicle". in Proc. Electric Vehicle Symposium. 2009.
[9] Y.P. Yang, J.J. Liu, and T.H. Hu, "An energy management system for a directly-driven electric scooter". Energy Conversion and Management, Vol. 52(1), p. 621-629, 2011.
[10] M. Broussely, et al., "Main aging mechanisms in Li ion batteries". Journal of Power Sources, Vol. 146(1-2), p. 90-96, 2005.
[11] 德州儀器, “新電池技術與可攜式電源管理技術發展”, 可攜式電源設計研討會, 第1-10頁, 2007年
[12] J. Vetter, et al., "Ageing mechanisms in lithium-ion batteries". Journal of Power Sources, Vol. 147(1-2), p. 269-281, 2005.
[13] D.Y. Ohm, "Dynamic model of PM synchronous motors", Drivetech, Inc., Blacksburg, Virginia, www.drivetechinc.com, 2000.
[14] 吳昇澤, “永磁同步馬達 d-q 軸電感量測原理推導與實測”, 馬達電子報, 成大馬達科技研究中心, 第750期, 2018年2月
[15] 許敏澤, “考量舒適性之電動機車動力馬達再生制動方法研製”, 國立成功大學電機工程學系碩士論文, 2018年
[16] 劉昌煥, “交流電機控制 ─ 向量控制與直接轉矩控制原理”, 第四版, 東華書局, 2016年
[17] 袁雷, 胡冰新, 魏克银, 陈姝, “現代永磁同步電機控制原理及MATLAB仿真”, 第一版, 北京航空航天大學出版社, 2016年
[18] 劉子瑜, “基於弦波電流驅動瑜永磁同步馬達電流迴路控制之研究”, 國立成功大學電機工程學系碩士論文, 2009年
[19] S.C. Nagpure and B. Bhushan, "Nanomaterials for Electrical Energy Storage Devices", in Encyclopedia of Nanotechnology. Springer Netherlands, Dordrecht, p. 2473-2485, 2016.
[20] 王肅之, “從鋰電池淺談電動車輛電池之考量與規範”, 車輛研測專刊, 財團法人車輛研究測試中心, 第99期, 2014年4月
[21] 刘海晶, 夏永姚, “混合型超级电容器的研究进展”, 化学进展, 第23卷, 第595-604頁, 2011年3月
[22] A.M. Saleem, V. Desmaris, and P. Enoksson, "Performance Enhancement of Carbon Nanomaterials for Supercapacitors". Journal of Nanomaterials, Vol. 2016, p. 17, 2016.
[23] Wikipedia contributors, "Pseudocapacitance". Available from: https://en.wikipedia.org/w/index.php?title=Pseudocapacitance&oldid=886940979.
[24] JSR Micro NV, "The concept of Lithium Ion Capacitor". Available from: https://www.jsrmicro.be/emerging-technologies/lithium-ion-capacitor/concept-lithium-ion-capacitor.
[25] 陳映蓉, “超電容電量估算與模組配置於儲能系統之設計與實現”, 國立成功大學電機工程學系碩士論文, 2012年
[26] L. Gao, R.A. Dougal, and S. Liu, "Power enhancement of an actively controlled battery/ultracapacitor hybrid". IEEE transactions on power electronics, Vol. 20(1), p. 236-243, 2005.
[27] M.B. Camara, H. Gualous, F. Gustin, and A. Berthon, "Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles". IEEE Transactions on Vehicular Technology, Vol. 57(5), p. 2721-2735, 2008.
[28] W. Lhomme, et al. Design and control of a supercapacitor storage system for traction applications. in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. 2005. IEEE.
[29] M. Ortúzar, J. Moreno, and J. Dixon, "Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation". IEEE Transactions on industrial electronics, Vol. 54(4), p. 2147-2156, 2007.
[30] S. Chakraborty, et al., "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends". Energies, Vol. 12(8), p. 1569, 2019.
[31] H. Yoo, S.-K. Sul, Y. Park, and J. Jeong, "System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries". IEEE Transactions on Industry Applications, Vol. 44(1), p. 108-114, 2008.
[32] K. Itani, et al., "Regenerative Braking Modeling, Control, and Simulation of a Hybrid Energy Storage System for an Electric Vehicle in Extreme Conditions". IEEE Transactions on Transportation Electrification, Vol. 2(4), p. 465-479, 2016.
[33] X.B. Han, M.G. Ouyang, L.G. Lu, and J.Q. Li, "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles". Energies, Vol. 7(8), p. 4895-4909, 2014.
[34] Renesas Electronics, "Renesas Starter Kit for RX63T (144-pin)". Available from: https://www.renesas.com/us/en/products/software-tools/boards-and-kits/starter-kits/renesas-starter-kit-for-rx63t-144-pin.html.
[35] Gathertech Intelligent Automation, "MR2 Hardwrae-in-the-loop (HIL)". Available from: https://www.gathertech.net/en-us-hil-product.
校內:2024-08-31公開