| 研究生: |
蔡侑侖 TSAI, YU-LUN |
|---|---|
| 論文名稱: |
非接觸式微米級印刷電路板銅箔厚度量測系統及多重品質特性之最佳感測線圈設計 Development of A Contactless Micron-Sized PCB Copper Foil Thickness Measuring System and Design of Optimal Sensing Coil with Multiple Quality Characteristics |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 非破壞性檢測 、渦電流 、多重品質分析 、電磁感應線圈 、印刷電路板 |
| 外文關鍵詞: | non-destructive testing, eddy current, multiple quality analysis, electromagnetic sensing coil, printed circuit board |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是應用田口法結合主成分分析法與灰關聯法,建立一種可分析多重品質特性之最佳化電磁感應線圈設計方法,並結合渦電流檢測技術,設計一套非接觸式微米級印刷電路板(Printed Circuit Boards, PCB)銅箔厚度量測系統。此方法是先透過田口方法初步篩選變動的參數,評估感應線圈的品質特性,接著搭配主成分分析法,將線圈品質特性之損失函數轉換成互相獨立的主成分組合,再透過灰關聯法轉換主成分得點,以求得較佳的參數資料,並計算各因子間的貢獻度後,挑選高貢獻度因子,進行遞迴比較,以求得最佳感測線圈設計。透過此方法,可以有效降低多重品質分析中,決定最佳參數水準所造成的衝突或取捨。因該系統應用於微米級PCB,所以厚度量測首重系統的鑑別度,而系統的鑑別度跟電阻、感抗和阻抗有密不可分的關係。本論文除設計一套,低成本渦電流檢測系統外,還設計一套多重品質因素最佳感測線圈設計方法,並實際繞製感應線圈後結合本檢測系統做驗證。同時亦開發一套具自動追蹤( Auto tracking )功能的人機介面,方便讓使用者可以即時查看量測資料。最後由量測不同銅膜厚度之PCB驗證,並針對結果分析與討論。
By combining Taguchi Method with Principal Components Analysis and Grey Relational Analysis, the optimal electromagnetic sensing coil design for analyzing multiple quality characteristics is established and integrated with eddy current testing to design a contactless micron-sized printed circuit board (PCB) copper foil thickness measuring system. Taguchi Method was first used for selecting variable parameters and evaluating the quality characteristics of sensing coil. Matched with Principal Components Analysis, the loss function of coil quality characteristics is then transformed to mutually independent principal components. Grey Relational Analysis is further applied to transforming the points of principal components for the optimal parameter data. High-contribution factors, after calculating the contribution among factors, are recursively selected and compared to acquire the optimal sensing coil design. Such a method could effectively reduce the impact caused by determining optimal parameter standards in multiple quality analysis. In addition to designing a low-cost eddy current testing system, a multi-quality optimal sensing coil design is designed. After actually winding sensing coil to integrate with this testing system, an auto-tacking human machine interface is developed for users looking up the measuring data at any time. Finally, we measured PCB with different thicknesses to verify the proposed method in this study.
[1] 富士經濟,「印刷電路板製造流程」,工研院IEK 研究整理,2016。
[2] R. Palanisamy, et al., “Prediction of Eddy current signals for nondestructive testing of condenser tubing,” Magnetics, IEEE Transactions on Magnetics, vol. 19, 1983.
[3] Y. Tang, et al., “Feature extraction based on the principal component analysis for pulsed magnetic flux leakage testing,” in Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, 2011.
[4] V. V. Nagarkar, et al., “CCD-based high resolution digital radiography system for non destructive evaluation,” Nuclear Science, IEEE Transactions on Magnetics, vol. 44, 1997.
[5] J. F. Coste, et al., “Description of a method for the measurement of the Rayleigh wave velocity: application to the thickness measurement of metallic coatings,” in Ultrasonics Symposium, 1994. Proceedings. 1994 IEEE, 1994.
[6] T. Ding, et al.,“Ultra-Thin flexible eddy current sensor array for gap measurement ,” Tsinghua Science and Technology ,vol. 9, 2004.
[7] S. Yamada, et al., “Application of ECT technique for inspection of bare PCB,” IEEE Transactions on Magnetics, vol. 39, 2003.
[8] K. Chomsuwan, et al., “Application of eddy-current testing technique for high-density double-layer printed circuit board inspection ,” IEEE Transactions on Magnetics , vol. 41, 2005.
[9] R. Xie, et al., “A novel flexible eddy-current probe with high sensitivity for NDT ,” Nondestructive Evaluation/Testing (FENDT) , IEEE Far East Forum on , 2014.
[10] D. Kacprzak, et al., “Novel Eddy Current Testing Sensor for the Inspection of Printed Circuit Boards ,” IEEE Transactions on Magnetics , vol. 37, 2001.
[11] T. Taniguchi, et al., “Wavelet-based processing of ECT images for inspection of printed circuit board ,” IEEE Transactions on Magnetics , vol. 37, 2001.
[12] S. Socheatra, et al., “Printed circuit board interconnect fault inspection based on eddy current testing ,” Intelligent and Advanced Systems (ICIAS), 2014.
[13] S. Yamada, et al., “Eddy-current testing probe with spin-valve type GMR sensor for printed circuit board inspection ,” IEEE Transactions on Magnetics , vol. 40, 2004.
[14] H.Wang, et al., “A Compact and High-Performance Eddy-Current Sensor Based on Meander-Spiral Coil ,” IEEE Transactions on Magnetics , vol. 51, 2015.
[15] S. Yamada, et al., “Investigation of Printed Wiring Board Testing By Using Planar Coil Type ECT Probe,” IEEE International Magnetics Conference (INTERMAG) , 1997.
[16] D. Cai, et al., “Geometric optimization of a flexible arrayed eddy current sensor for non-destructive testing,” SENSORS, IEEE, 2016.
[17] K. Chomsuwan, et al., “Improvement on Defect Detection Performance of PCB Inspection Based on ECT Technique With Multi-SV-GMR Sensor,” IEEE Transactions on Magnetics, vol. 43, 2007.
[18] K. Chomsuwan, et al., “Bare PCB Inspection System With SV-GMR Sensor Eddy-Current Testing Probe ,” IEEE Sensors Journal, vol. 7, 2007.
[19] T. Somsak, et al., “Conductive microbead detection by Helmholtz coil technique with SV-GMR sensor ,” Electronic Design, Test and Applications, Third IEEE International Workshop on, 2006.
[20] N. Zhang, et al., “Study on planar coil with multi-frequency stimulations applied to an eddy current non-destructive testing ,” Electrical Machines and Systems (ICEMS) , 2017.
[21] 劉尹雄,「脈衝式渦電流檢測系統之設計與應用」,國立成功大學電機工程學系碩士論文,1999。
[22] C. C. Tai, “Characterization of coatings on magnetic metal using the swept frequency eddy current method,” Review of Scientific Instruments, vol. 71, pp. 3161-3167, 2000.
[23] 楊弘吉,「渦電流探頭尺寸與金屬夾層瑕疵檢測信號之關係探討」,技術學刊,vol. 17,pp. 525-533 2002。
[24] H. C. Yang, et al., “Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate,” Measurement Science and Technology, vol. 13, pp. 1259–1265, 2002.
[25] C. C. Tai, et al., “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method,” IEEE Transactions on Magnetics, vol. 38, pp. 205-210, 2002.
[26] 楊弘吉,「渦電流非破壞性檢測系統之設計及應用」,國立成功大學電機工程學系博士論文,2003。
[27] S. F. Wang, et al., “Time-Domain and Frequency-Domain Eddy Current Simulations by the Finite Element Method,” Key Engineering Materials, vol. 270-273, pp. 585-592, 2004.
[28] 王勝豐,「有限元素法分析掃頻式和脈衝式渦電流檢測」,國立成功大學電機工程學系碩士論文,2003。
[29] 潘彥霖,「光感影像法之多重物理量數值建模與分析:缺陷與渦電流探頭電磁場之檢測」,國立成功大學電機工程學系博士論文,2010。
[30] Y. L. Pan, et al., “Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method,” Magnetics, IEEE Transactions on, vol. 48, pp. 347-350, 2012.
[31] 蔡秉峯,「結合田口法與基因演算法於無線傳能系統最佳錯位容忍線圈設計」,國立成功大學電機工程學系碩士論文,2016。
[32] 洪建智,「應用田口法與基因演算法於電磁熱療軟性線圈優化設計」,國立成功大學電機工程學系碩士論文,2017。
[33] 潘奕成,「以田口方法求解IC封裝檢測製程參數之穩健設計問題」,國立成功大學工程管理學系碩士論文,2014。
[34] 李輝煌,「田口方法-品質設計的原理與實務」,高立圖書有限公司,2013。
[35] R. S. Chen, et al., “Application of Taguchi’s method on the optimal process design of an injection molded PC/PBT automobile bumper,”Elsevier Science, vol. 39, pp. 209-214, 1997.
[36] X. Tian, et al., “ Process parameters analysis of direct laser sintering and post treatment of porcelain components using Taguchi’s method, ”Elsevier Science, pp. 1903-1915, 2009.
[37] S.E. Nai, et al., “ Optimizing Radio Network Parameters for Vertical Sectorization via Taguchi’s Method, ”IEEE Transactions on Vehicular, vol. 65, No. 2, pp. 860-869, 2016.
[38] DIGITIMES企劃,「台灣PCB產值佔全球1/3 需加速智動化以因應競爭」,DIGITIMES科技網。
[39] 戴政祺,「非破壞性檢測」上課講義,國立成功大學電機系。
[40] 摩智數位科技,「渦電流之電磁感應原理」,台灣金屬材料品管有限公司。
[41] Panasonic,「電磁爐原理」,Panasonic Marketing Sales Taiwan Co., LTD.
[42] 林司牧,「電流上的微小路徑元素」國立臺灣大學物理系。
[43] 陳義裕,「磁感應強度總體效應」國立臺灣大學物理系。
[44] H. Wang, et al., “Noncontact Thickness Measurement of Metal Films Using Eddy-Current Sensors Immune to Distance Variation,” IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 9, pp. 2557-2564, 2015.
[45] 蔡日新,「田口品質工程圖」,國立中山大學。
[46] 鄭凱文,「應用類神經網路、田口方法、主成份分析法與順序偏好法於多重品質特性製程改善之研究」,國立成功大學工業與資訊管理學系。
[47] “AD9851 Datasheet,” Analog Devices, Inc.
[48] “LT1210 Datasheet,” Linear Technology Corporation, Inc.
[49] “AD637 Datasheet,” Analog Devices, Inc.
[50] C. V. Dodd, et al., “Analytical Solutions to Eddy‐Current Probe‐Coil Problems,” Journal of Applied Physics, vol. 39, 1968.
[51] J. C. Moulder, et al., “Thickness and conductivity of metallic layers from eddy current measurements,” Review of Scientific Instruments vol. 63, pp. 3455-3465, 1992.
[52] 李朝夕、付躍文、鄒國輝,「主成分分析在飛機多層結構層間腐蝕脈衝渦流檢測中的應用」,南昌航空大學
[53] C. C. Tai, “Advanced eddy-current methods for quantitative NDE,” Department of Electrical Engineering Iowa State University Dissertation for Doctor of Philosophy, 1997.
[54] C. C. Hwang, et al., “A Fuzzy-Based Taguchi Method for Multiobjective Design of PM Motors,” IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2153-2156, May. 2013.
[55] 陳林湋,「低頻渦電流金屬厚度檢測系統研製」,國立成功大學電機工程學系碩士論文,2012。
校內:立即公開