簡易檢索 / 詳目顯示

研究生: 林宇浩
Lin, Yu-Hao
論文名稱: 使用新型二元搜尋演算法之全數位延遲鎖定迴路
An All-Digital Delay-Locked Loop by Using a New Binary Search Algorithm
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 79
中文關鍵詞: 延遲鎖定二元搜尋演算法
外文關鍵詞: Delay-Locked Loop, Binary Search Algorithm
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著超大型積體電路製程的進步,電路執行速度以及效能也隨之增加,因此,許多在於強調時脈同步、減少時脈歪斜及資料連結的技術被提出來處理上述問題,例如延遲鎖定迴路(Delay-Locked Loop)及延遲鎖相迴路(Phase-Locked Loop),由於延遲鎖定迴路提供無條件穩定、無相位誤差累積、快速鎖定、低抖動等優點,所以延遲鎖定迴路被更廣為運用於數位系統介面。其中全數位延遲鎖定迴路相較於傳統類比式延遲鎖定迴路更具有抗雜訊、與電路整合度高、更快速的鎖定時間、較容易設計等優點。本論文中,我們針對全數位連續近似暫存器延遲鎖定迴路提出了一個新的二元搜尋演算法,將傳統連續近似暫存器延遲鎖定迴路在漸進式遞增延遲線長度過程中所產生諧波鎖定以及重複搜索的問題移除外,並將二元搜尋的概念運用於延遲線搜索的過程中,可以降低搜索時間以達到鎖定狀態

    本論文設計使用台積電0.18μm 1P6M CMOS 製程製作,操作頻率從55MHz到500MHz,在最高頻率操作下量測到的功率消耗為10.2mW,操作頻率為500MHz時的方均根抖動值為2.15ps。

    For the rapid progress of VLSI process technology, the developed VLSI systems nowadays have features of ultra-high operation speed and performance. Thus, a lot of technologies such as Delay-Locked Loops (DLLs) and Phase-Locked Loops (PLLs) have been developed to handle the problems of clock synchronization, clock deskew buffer and data link. The all-digital type DLLs have good performance in the tolerance of noise, the capability of integration, and fast locking time. In this paper, we proposed an all-digital DLL by using a new binary search algorithm. The drawback of redundant repetitive searches is removed in this work. Moreover, the concept of binary search algorithm is also adopted to speed the locking process.
    This work is fabricated in TSMC 0.18μm 1P6M CMOS process. The operation frequency ranges from 55MHz to 500MHz. The power consumption is 10.2mW and r.m.s jitter is 2.15ps at 500MHz input clock frequency.

    ABSTRACT CONTENTS LIST OF TABLES LIST OF FIGURES Chapter 1 Introduction........................1 1.1 Motivation..............................1 1.2 Introduction of Clock Skew..............2 1.3 Thesis Overview.........................4 Chapter 2 Delay-Locked Loop...................5 2.1 Introduction............................5 2.2 Basic of Delay-Locked Loops.............6 2.2.1 Introduction...........................6 2.2.2 PD (Phase Detector)....................8 2.2.3 CP (Charge Pump) / LF (Loop Filter)....9 2.2.4 Voltage-controlled delay line..........10 2.2.4.1 RC Time Constant Delay Cell..........11 2.2.4.2 Current-Starved Delay Cell...........12 2.3 Stability Analysis......................13 2.4 Design Consideration of DLLs............15 Chapter 3 Characteristics of Digital Delay-Locked Loop...19 3.1 Design of Conventional Digital DLL......20 3.2 Register-Based DLL......................21 3.3 Counter-Based DLL.......................23 3.4 Successive Approximation Register-Controlled DLL...25 3.4.1 Conventional SAR DLL..................25 3.4.2 Variable SAR DLL......................27 3.5 Digitally Controlled Delay Line.........30 3.5.1 Coarse-Tuning Delay Cell..............31 3.5.2 Fine-Tuning Delay Cell................33 3.6 Comparisons of Digital DLL and Analog DLL..........35 Chapter 4 All-Digital Delay Lock Loop Using a New Binary Search algorithm.........................................37 4.1 Repetitive Search Issue of Variable SAR Algorithm...37 4.2 System Architecture.................................40 4.2.1 Fast-Locking Variable SAR algorithm...............40 4.2.2 Recursive SAR algorithm...........................45 4.2.3 Simulink Simulation results.......................48 4.3 Circuit Implementations.............................53 4.3.1 True Single Phase Clock (TSPC)DFF.......................53 4.3.2 FVSAR and RSAR Controllers........................54 4.3.3 Fail-to-Lock Judgment Circuits....................60 4.3.4 Digital-Controlled Delay Line.....................62 4.3.5 Phase Detector....................................66 Chapter 5 Experimental Results and Conclusions..........68 5.1 Experimental Results...............................68 5.2 Conclusions........................................75 REFERENCES...............................................76

    [1] G. K. Dehng, J. M. Hsu, C.Y. Yang, S. I. Liu “Clock-Deskew Buffer Using a SAR-Controlled Delay-Lock Loop”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.35, NO.8, AUGUST 2000.
    [2] H. Sutoh, K. Yamakoshi, and M. Ino, “Circuit technique for skew-free clock distribution”, in IEEE Custom Integrated Circuits Conf. 1995, pp. 163-166
    [3] R. J. Yang, S. I. Liu “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO.2, FEBRUARY 2007.
    [4] A. Hatakeyama, H. Mochizuki, T. Aikawa, M. Takita, Y. Ishii, H. Tsuboi, S. Y. Fujioka, S. Yamaguchi, M. Koga, Y. Serizawa, K. Nishimura, K. Kawabata, Y. Okajima, M. Kawano, H. Kojima, K. Mizutani, T. Anezaki, M. Hasegawa, and M. Taguchi, “A 256-Mb SDRAM using a register-controlled digital DLL” , IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 32, pp.1728-1734, Nov.1997.
    [5] Y. J. Jung, S. W. Lee, D. Shim, W. Kim and S. I. Cho, “Dual-Loop Delay-Locked Loop Using Multiple Voltage-Controlled Delay Lines”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.36, no.5, pp. 784-791, May. 2001
    [6] D. J. Foley and M. P. Flynn, “CMOS DLL-Based 2-V 3.2-ps Jitter 1-GHz Clock Synthesizer and Temperature-Compensated Tunable Oscillator”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.36, no.3, pp. 417-423, Mar. 2001.

    [7] Y. Moon, J. Choi, K. Lee, D. K. Jeong and M. K. Kim, “An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.35, no.3, pp. 377-384, Mar. 2000.
    [8] B.W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, and M. A. Horowitz , “Portable Digital DLL for High-Speed CMOS Interface Circuits”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.34, no.5, pp. 632-644, May. 1999.
    [9] H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.37, no.8, pp. 1021-1027, Aug. 2002.
    [10] S. Sidiropoulos, and M. A. Horowitz, “A Semidigital Dual Delay-Locked Loop”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.32, no.11, pp. 1683-1692, Nov. 1997.
    [11] F. Baronti, D. Lunardini, R. Roncella, and R. Saletti, “A self-calibrating delay-locked delay line with shunt-capacitor circuit scheme”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 39, pp. 384-387, Feb. 2004.
    [12] T. Hamamoto, K. Furutani, T. Kubo, S. Kawasaki, H. Iga, T. Kono, Y Konishi, andT. Yoshihara, “A 667-Mb/s operating digital DLL architecture for 512-Mb DDR SDRAM”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 39, no. 1, pp.194-206, Jan. 2004.
    [13] T. Matano, Y. Takai, T. Takahashi, Y. Sakito, I. Fujii, Y. Takaishi, H. Fujisawa, S. Kubouchi, S. Narui, K. Arai, M. Morino, M. Nakamura, S. Miyatake, T. Sekiguchi, and K. Koyama, “A1-Gb/s/pin512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.38, no.5, pp.762-768, May 2003.
    [14] K. Minami, M. Miruno, H. Yamaguchi, T. Nakano, Y. Matsushima, Y. Sumi, T. Sato, H. Yamashida, and M. Yamashina, “A 1GHz portable digital delay-locked loop with infinite phase capture ranges”, in IEEE Int. Solid-State Circ. Conf. Dig. Paper, pp.350-351, 469, 2000.
    [15] A. Rossiand, G. Fucilli, “Non redundant successive approximation register for A/D converters,” Electron. Lett., vol.32,no.12,pp.1055-1057, Jun.1996.
    [16] F. Lin, and R. J. Baker, “A Register-Controlled Symmetrical DLL for Double-Data-Rate DRAM,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 34, Apr. 1999.
    [17] C. S. Hwang, and S.I. Liu, “A 2V Clock Synchronizer using Digital Delay-Locked Loop,” in The second IEEE Asia Pacific Conference on ASICs, pp. 91-94, Aug. 2000.
    [18] P. L. Chen, C. C. Chung, and C. Y. Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors,” Transactions on Circuits and Express Briefs, vol. 52, no. 5, May. 2005. Systems-II
    [19] M.N. Mohammad, and M. Sachdev, “A Monotonic Digitally Controlled Delay Element,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 40, no. 11, Nov. 2005.
    [20] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 33, pp. 1568-1571, Oct. 1998.
    [21] R. J. Yang, S. I. Liu “A 2.5GHz All-Digital Delay-Locked Loop in 0.13μm CMOS Technology” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO.11, FEBRUARY 2007.

    [22] Y. S. Kim, S. J. Park, Y.S. Kim, D. B. Jang, S. W. Jeong, H. J. Park, J. Y. Sim, “A 40-to-800Mhz locking multiphase DLL,” in IEEE Int. Solid-State Circ. Conf. Dig. Paper, Feb. 2007, pp. 306-307
    [23] H. Chae, D. Shin, K. Kim, K. W. Kim, Y. J. Choi, C. Kim, “A Wide-Range All-Digital Multiphase DLL with Supply Noise Tolerance,” in Proc. IEEE Asian Solid-State Circ. Conf., Nov. 2008.
    [24] H. Kuo, M.F. Lin, and C.H. Chen, “A Multi-Band Delay-Locked Loop with Fast-Locked and Jitter-Bounded Features” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008.
    [25] D. H. Xhong. “A Wide-Range All-Digital Dealy-Locked Loop Using Three Fast-Lock Binary Search Algorithms with Duty Cycle Correction ” MS thesis, National Taiwan University of Science and Technology, May 2010.
    [26] R. J. Yang, D. H. Zhong, “ An All-Digital Delay-Locked Loop Using Two Fast-Lock Binary Search Algorithms” submit to IEEE Asian Solid-State Circuits Conf., Sep. 2009.

    無法下載圖示 校內:2020-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE