| 研究生: |
洪智梧 Hung, Chih-Wu |
|---|---|
| 論文名稱: |
以射頻濺鍍法製備SnO2:Mo薄膜之結構與氣體感測性質之研究 Studies on the Structure and Gas Sensing Properties of SnO2:Mo Thin Films Produced by RF Sputtering |
| 指導教授: |
李世欽
Lee, Shih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 氣體感測 、二氧化錫 、鉬 |
| 外文關鍵詞: | gas sensing, molybdenum, tin oxides |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今社會對公共安全和環保之重視日益漸增,對於各種污染性氣體之排放和濃度規範皆有立法規定,因此對各種污染性氣體偵測的需求也日益漸增。乙醇為易揮發性液體且易燃,過量的乙醇蒸氣,對人體健康有害,因此在交通安全防護、實驗室、工業環境都需要偵測其含量。金屬氧化物半導體為現今應用最普遍、最廣泛使用之氣體感測材料,其中包括二氧化錫(SnO2),利用二氧化錫在不同氣氛中電阻變化之特性,可偵測氧化性氣氛及還原性氣氛。二氧化錫可還藉由添加其他物質以增進對特定氣體的感測能力。
本研究嘗試使用反應性射頻磁控濺鍍法製備SnO2:Mo薄膜,研究Mo的添加對乙醇蒸氣感測性能的影響。在固定工作壓力7 mtorr下,利用尋找SnO2薄膜最佳氣體感測性質之O2流量分率,再以此O2流量分率製備SnO2:Mo薄膜,Mo之含量為利用Mo靶濺鍍槍之功率大小加以控制,並研究退火製程溫度對薄膜氣體感測性質之影響。薄膜結構以低掠角X-ray繞射儀(GIAXRD)分析,薄膜表面型態及表面粗糙度(Rrms)以場發射型掃描式電子顯微鏡(FE-SEM)、原子力顯微鏡(AFM)觀察,薄膜成分及化學鍵結以X-ray光電子能譜儀(XPS)分析,並以本實驗室組裝之氣體感測儀器量測電性及氣體感測性質。
研究結果顯示,SnO2薄膜氣體對100 ppm乙醇氣氛感測性質最佳之O2流量分率為35%,最佳操作溫度為450℃,而最佳之退火製程為溫度500℃,持溫時間四小時。
以O2流量分率35%,製備不同Mo含量之SnO2:Mo薄膜之研究結果顯示:Mo之添加,在SnO2晶格中產生固溶,使結構產生變化,晶粒、表面叢集成長受到抑制,使薄膜結晶性、表面粗糙度隨Mo添加量上升而下降。SnO2:Mo薄膜氣體對100 ppm乙醇氣氛感測性質最佳之條件為:Mo靶濺鍍槍功率為60W,靈敏度最大值出現在操作溫度400℃時,而最佳之退火製程為溫度500℃,持溫時間四小時。
SnO2薄膜氣體感測器對其他還原性氣氛之氣體感測性質相似,選擇性不佳,而SnO2:Mo氣體感測薄膜存在對乙醇氣氛之選擇性。
There is an increasing importance about public safety and environmental protection nowadays. Air pollutions are prohibited and demands for detecting pollution gases are increased. Ethanol is evaporable and flammable at room temperature. Excessive ethanol vapor are harmful to human. Determination of the content of ethanol vapor in atomosphere is necessary in experimental and factory area and for traffic safety protection.
Metal oxide semiconductors(MOS) are the most widespread gas sensing materials, tin oxides(SnO2) are included. One of the characters of SnO2 is its resistivity changes when exposuring in reducing and oxidizing gases. By measuring the changes of resistivity, we can determine the existence and concentration of reducing and oxidizing gases. Adding other materials into SnO2 matrix can improve the sensing ability and selectivity to specific gases.
We tried to prepare SnO2:Mo thin films by reactive RF sputtering, investigating the influence of molybdenum addition to gas sensing properties. When working pressure fixed at 7 mtorr, by changing the O2 flow percentage, we tried to find out the SnO2 film which has the best gas sensing ability, thus fix the O2 flow percentage to prepare SnO2:Mo thin films. Changing amount of Mo content by adjusting the Mo sputtering gun power from 0W to 100W. We also investigated the influence of annealing temperature to gas sensing properties.
Films structure are analysed by GIAXRD, morphology and roughness are analysed by FE-SEM and AFM, chemical composition and bonding states are analysed by XPS, gas sensing properties and electrical properties are measured by gas sensing instrument which assembled by our laboratory.
The results indicated that the SnO2 film has the best sensing ability which its O2 flow percentage is 35%, the optimum operation temperature is 450℃ and the optimum annealing temperature is 500℃
The results indicated that addition of molybdenum formed solid solutions, changing the structure of SnO2 matrix. The growth of grains and aggregations was be inhibited. Crystallization and surface roughness(Rrms) decreased when the amount of molybdenum increased.
The results indicated that the SnO2:Mo thin film had the best sensing ability which its Mo sputtering gun power is 60W and the optimum operation temperature is 400℃ and the optimum annealing temperature is 500℃.
The results indicated that instead of SnO2 thin films have the same ability to reducing gases, SnO2:Mo thin films have the selectivity to ethanol vapor.
[1] J. D. Choi, G. M. Choi, "Electrical and CO gas sensing properties of layered ZnO-CuO sensor", Sensors and Actuators B: Chemical, 69 (2000) 120-126.
[2] K. Steiner, U. Hoefer, G. Kuhner, G. Sulz, E. Wagner, "Ca- and Pt-catalysed thin-film SnO2 gas sensors for CO and CO2 detection", Sensors and Actuators B: Chemical, 25 (1995) 529-531.
[3] Y.-H. Choi, S.-H. Hong, "H2 sensing properties in highly oriented SnO2 thin films", Sensors and Actuators B: Chemical, 125 (2007) 504-509.
[4] H.-C. Lee, W.-S. Hwang, G.-B. Lee, Y.-M. Lu, "Effects of O2/Ar flow ratio on the alcohol sensitivity of tin oxide film", Applied Surface Science, 252 (2006) 3502-3508.
[5] S. Mishra, C. Ghanshyam, N. Ram, S. Singh, R. P. Bajpai, R. K. Bedi, "Alcohol sensing of tin oxide thin film prepared by sol-gel process", Bulletin of Materials Science, 25 (2002) 231-234.
[6] G. Neri, A. Bonavita, G. Micali, N. Donato, F. A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, "Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion", Sensors and Actuators B: Chemical, 117 (2006) 196-204.
[7] B. T. Marquis, J. F. Vetelino, "A semiconducting metal oxide sensor array for the detection of NOx and NH3", Sensors and Actuators B: Chemical, 77 (2001) 100-110.
[8] S. Chakraborty, A. Sen, H. S. Maiti, "Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors", Sensors and Actuators B: Chemical, 115 (2006) 610-613.
[9] F. Quaranta, R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A. Licciulli, A. Zocco, "A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature", Sensors and Actuators B: Chemical, 58 (1999) 350-355.
[10] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, "Modified zinc oxide thick film resistors as NH3 gas sensor", Sensors and Actuators B: Chemical, 115 (2006) 128-133.
[11] B. Esfandyarpour, S. Mohajerzadeh, A. A. Khodadadi, M. D. Robertson, "Ultrahigh-sensitive tin-oxide microsensors for H2S detection", Ieee Sensors Journal, 4 (2004) 449-454.
[12] C. Jin, T. Yamazaki, K. Ito, T. Kikuta, N. Nakatani, "H2S sensing property of porous SnO2 sputtered films coated with various doping films", Vacuum, 80 (2006) 723-725.
[13] J. Tamaki, Y. Nakataya, S. Konishi, "Micro gap effect on dilute H2S sensing properties of SnO2 thin film microsensors", Sensors and Actuators B: Chemical, 130 (2008) 400-404.
[14] Z. Zhi-Gang, Z. Gang, W. Ming, Z. Zhong-Tai, "Temperauture-humidity-gas multifunctional sensitive ceramics", Sensors and Actuators, 19 (1989) 71-81.
[15] B.-K. Min, S.-D. Choi, "C4H10 sensing characteristics of ion beam sputtered SnO2 sensors", Sensors and Actuators B: Chemical, 108 (2005) 125-129.
[16] M. H. Madhusudhana Reddy, A. N. Chandorkar, "E-beam deposited SnO2, Pt-SnO2 and Pd-SnO2 thin films for LPG detection", Thin Solid Films, 349 (1999) 260-265.
[17] M. V. Vaishampayan, R. G. Deshmukh, I. S. Mulla, "Influence of Pd doping on morphology and LPG response of SnO2", Sensors and Actuators B: Chemical, 131 (2008) 665-672.
[18] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, "Surface customization of SnO2 thick films using RuO2 as a surfactant for the LPG response", Sensors and Actuators B: Chemical, 122 (2007) 357-364.
[19] C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, T. H. Wang, "Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature", Applied Physics Letters, 91 (2007) 032101-032103.
[20] K. Zakrzewska, "Gas sensing mechanism of TiO2-based thin films", Vacuum, 74 (2004) 335-338.
[21] Y. Pimtong-Ngam, S. Jiemsirilers, S. Supothina, "Preparation of tungsten oxide-tin oxide nanocomposites and their ethylene sensing characteristics", Sensors and Actuators A: Physical, 139 (2007) 7-11.
[22] V. S. Vaishnav, P. D. Patel, N. G. Patel, "Indium Tin Oxide thin film gas sensors for detection of ethanol vapours", Thin Solid Films, 490 (2005) 94-100.
[23] S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. K. Seshagiri, T. Gnanasekaran, "Electrical conductivity and gas sensing properties of MoO3", Sensors and Actuators B: Chemical, 101 (2004) 161-174.
[24] M. Batzill, U. Diebold, "The surface and materials science of tin oxide", Progress in Surface Science, 79 (2005) 47-154.
[25] J. S. Chen, H. L. Li, J. L. Huang, "Structural and CO sensing characteristics of Ti-added SnO2 thin films", Applied Surface Science, 187 (2002) 305-312.
[26] J. S. Chen, W. T. Lo, J. L. Huang, "Gas sensitivity of reactively sputtered SnO2 films", Journal of the Ceramic Society of Japan, 110 (2002) 18-21.
[27] M. de la L. Olvera, R. Asomoza, "SnO2 and SnO2:Pt thin films used as gas sensors", Sensors and Actuators B: Chemical, 45 (1997) 49-53.
[28] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, "SnO2 thin films for gas sensor prepared by r.f. reactive sputtering", Sensors and Actuators B: Chemical, 25 (1995) 465-468.
[29] T. Sahm, A. Gurlo, N. Barsan, U. Weimar, "Basics of oxygen and SnO2 interaction; work function change and conductivity measurements", Sensors and Actuators B: Chemical, 118 (2006) 78-83.
[30] M. Ivanovskaya, P. Bogdanov, G. Faglia, P. Nelli, G. Sberveglieri, A. Taroni, "On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors", Sensors and Actuators B: Chemical, 77 (2001) 268-274.
[31] B.-K. Min, S.-D. Choi, "SnO2 thin film gas sensor fabricated by ion beam deposition", Sensors and Actuators B: Chemical, 98 (2004) 239-246.
[32] J. G. Partridge, M. R. Field, J. L. Peng, A. Z. Sadek, K. Kalantar-zadeh, J. Du Plessis, D. G. McCulloch, "Nanostructured SnO2 films prepared from evaporated Sn and their application as gas sensors", Nanotechnology, 19 (2008).
[33] M. V. Vaishampayan, R. G. Deshmukh, P. Walke, I. S. Mulla, "Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor", Materials Chemistry and Physics, 109 (2008) 230-234.
[34] D. Haridas, K. Sreenivas, V. Gupta, "Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection", Sensors and Actuators B: Chemical, 133 (2008) 270-275.
[35] L. Eckertova, T. Ruizicka: Diagnostics and Applications of Thin films, Institute of Physics Publishing, 1993.
[36] J. A. Venables, G. D. T. Spiller, M. Hanbucken, "Nucleation and Growth of Thin films", Reports on Progress in Physics, 47 (1984) 399-459.
[37] J. L. Vossen, W. Kern: Thin Film Processes, Academic Press, New York, 1978.
[38] K. Ihokura, J. Watson: The Stannic Oxide Gas Sensor-Principles and Applications, CRC press, TOKYO, 1994.
[39] G. Sberveglieri: Gas sensors: Principle, operation and developments, Kluwer Academic Publishers, Netherlands, 1992, pp. 89-186.
[40] 蔡嬪嬪, 曾明漢, "氣體感測器之簡介,應用市場", 材料與社會, 68 (1992) 50-61.
[41] 一之瀨昇, 小林哲二: 感測器原理與應用技術, 全華, 1986, pp. 144-153.
[42] 林鴻明, 曾世杰, "奈米半導體材料之特殊氣體感測性質", 工業材料, 157期 (89年) 163-169.
[43] Z. M. Jarzebski, J. P. Marton, "Physical Properties of SnO2 Materials", Journal of The Electrochemical Society, (1976) 199C-205C.
[44] T. Hahn: International Tables for Crystallography, Springer, The Netherlands, 2002.
[45] S.-S. Park, J. D. Mackenzie, "Thickness and microstructure effects on alcohol sensing of tin oxide thin films", Thin Solid Films, 274 (1996) 154-159.
[46] N. Jankovic, "Semiconductor sensors : S.M. Sze (ed.), John Wiley & Sons, New York, 1994", Microelectronics Journal, 28 (1997) 360-360.
[47] H. Ohnishi, H. Sasaki, T. Matsumoto, M. Ippommatsu, "Sensing mechanism of SnO2 thin film gas sensors", Sensors and Actuators B: Chemical, 14 (1993) 677-678.
[48] D. Kohl, "Surface processes in the detection of reducing gases with SnO2-based devices", Sensors and Actuators, 18 (1989) 71-113.
[49] S. R. Morrison: The Chemical Physics of Surfaces, Plenum Press New York, 1990.
[50] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, "Interactions of tin oxide surface with O2, H2O AND H2", Surface Science, 86 (1979) 335-344.
[51] P. B. Weisz, "Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis", The Journal of Chemical Physics, 21 (1953) 1531-1538.
[52] G. Sberveglieri, S. Groppelli, P. Nelli, A. Camanzi, "Bismuth-doped tin oxide thin-film gas sensors", Sensors and Actuators B: Chemical, 3 (1991) 183-189.
[53] K. H. Cha, H. C. Park, K. H. Kim, "Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2", Sensors and Actuators B: Chemical, 21 (1994) 91-96.
[54] G. C. Bond, L. R. Molloy, M. J. Fuller, "Oxidation of carbon monoxide over palladium–tin(IV) oxide catalysts: an example of spillover catalysis", Journal of the Chemical Society, Chemical Communications, (1975) 796-797.
[55] S. R. Morrison, "Selectivity in semiconductor gas sensors", Sensors and Actuators, 12 (1987) 425-440.
[56] N. Yamazoe, Y. Kurokawa, T. Seiyama, "Effects of additives on semiconductor gas sensors", Sensors and Actuators, 4 (1983) 283-289.
[57] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Japanese Journal of Applied Physics, 27 (1988) 1798-1802.
[58] Y. Igasaki, H. Saito, "The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering", Thin Solid Films, 199 (1991) 223-230.
[59] C. Kittel: Introduction to solid state physics Wiley, Hoboken, NJ, 1995, pp. 688.
[60] K. Jain, R. P. Pant, S. T. Lakshmikumar, "Effect of Ni doping on thick film SnO2 gas sensor", Sensors and Actuators B: Chemical, 113 (2006) 823-829.
[61] N. Yamazoe, J. Fuchigami, M. Kishikawa, T.Seiyama, "Interac- tions of tin oxide surface with O2, H2O and H2", Surface Science, 86 (1979) 335-344
[62] M. Buchanan, J. B. Webb, D. F. Williams, "Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering", Applied Physics Letters, 37 (1980) 213-215.
[63] R. G. Goodchild, J. B. Webb, D. F. Williams, "Electrical properties of highly conducting and transparent thin films of magnetron sputtered SnO[sub 2]", Journal of Applied Physics, 57 (1985) 2308-2310.
[64] K. Suzuki, M. Mizuhashi, "Structural, electrical and optical properties of r.f.-magnetron-sputtered SnO2:Sb film", Thin Solid Films, 97 (1982) 119-127.
[65] V. V. Kissine, S. A. Voroshilov, V. V. Sysoev, "Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f. sputtering", Sensors and Actuators B: Chemical, 55 (1999) 55-59.
[66] P. Serrini, V. Briois, M. C. Horrillo, A. Traverse, L. Manes, "Chemical composition and crystalline structure of SnO2 thin films used as gas sensors", Thin Solid Films, 304 (1997) 113-122.
[67] H. Zhao, Y. Li, L. Yang, X. Wu, "Synthesis, characterization and gas-sensing property for C2H5OH of SnO2 nanorods", Materials Chemistry and Physics, 112 (2008) 244-248.
[68] H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, "Effect of film thickness on the properties of indium tin oxide thin films", Journal of Applied Physics, 88 (2000) 6021-6025.
[69] J. H. Kim, K. A. Jeon, G. H. Kim, S. Y. Lee, "Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition", Applied Surface Science, 252 (2006) 4834-4837.
[70] G. Samjeske, H. S. Wang, T. Loffler, H. Baltruschat, "CO and methanol oxidation at Pt-electrodes modified by Mo", Electrochimica Acta, 47 (2002) 3681-3692.
[71] Z. A. Ansari, S. G. Ansari, T. Ko, J. H. Oh, "Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing", Sensors and Actuators B: Chemical, 87 (2002) 105-114.
[72] H.-C. Lee, O. Ok Park, "Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering", Vacuum, 75 (2004) 275-282.
[73] K. Galatsis, Y. X. Li, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, "Semiconductor MoO3-TiO2 thin film gas sensors", Sensors and Actuators B: Chemical, 77 (2001) 472-477.
[74] N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, "Energy dependence of the ion-induced sputtering yields of monatomic solids", Atomic Data and Nuclear Data Tables, 31 (1984) 1-80.
[75] C. V. Ramana, V. V. Atuchin, V. G. Kesler, V. A. Kochubey, L. D. Pokrovsky, V. Shutthanandan, U. Becker, R. C. Ewing, "Growth and surface characterization of sputter-deposited molybdenum oxide thin films", Applied Surface Science, 253 (2007) 5368-5374.
[76] 黃坤祥: 粉末冶金學(再版), 中華民國粉末冶金學會, 2003.