| 研究生: |
蘇哲儀 Su, Che-Yi |
|---|---|
| 論文名稱: |
以低溫共燒陶瓷材料設計及製作微波射頻濾波器之探討 Design and Fabrication of Microwave Filter by Low Temperature Co-fire Ceramics Technology |
| 指導教授: |
黃正亮
Huang, Cheng-Liang 李文熙 Lee, Wen-Hsi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 濾波器 、低溫共燒陶瓷 、銀擴散 、鈦酸鋅 、積層陶瓷電容 |
| 外文關鍵詞: | LTCC, MLCC, Filter, (Zn, Mg)TiO3, Silver Migration, Silver Diffusion |
| 相關次數: | 點閱:63 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濾波器為通訊系統接收端的重要元件之一,近年來隨著微波通訊的蓬勃發展,對元件的特性及尺寸微小化的要求越趨嚴格。而低溫共燒陶瓷(LTCC, Low Temperature Co-Fired Ceramic) 技術因具有高密度、多層結構及可將被動元件內埋等多項優點而被廣泛應用於電子產業,特別是以無線通訊元件及模組為主的相關應用。
本論文主要在於利用低溫共燒陶瓷材料及製程技術為基礎,設計及實現低損耗、小尺寸的帶通濾波器,並嘗試以複合式的介電材料共燒方式,來實現半集總式帶通濾波器。採用複合式的介電材料共燒方式作為設計的基礎,其設計的概念主要著眼於,當單純使用低介電常數材料為基材時元件體積過大,以及當單純使用高介電常數材料為基材時元件特性不佳的缺點,而以複合式的介電材料共燒方式來實現濾波器,既可利用高介電常數材料來實現電容以期縮小元件體件,同時搭配低介電常數材料來實現傳輸線的部分,藉以提高品質因子﹙quality factor﹚,藉由兩種介電材料優點的結合,而達到縮小元件體積、同時還能維持良好的元件特性。
因此本論文的研究主要區分為三個主軸,首先對於所選用的商業化低介電常數LTCC材料 (其介電常數為7.8) 做研究,因LTCC的材料系統是所謂的玻璃陶瓷系統 (glass-ceramic),其在燒結過程中玻璃相會因結晶而逐漸減少,而燒結後系統的結晶相與玻璃相的種類及其相對量會影響基材的介電特性,因此有必要在設計濾波器之前,對於所選用的LTCC材料在燒結過程中,其結晶相的演化過程及其對介電特性的影響先行了解。
第二部分則是對於複合介電材料中用以實現電容的高介電常數材料 (Zn,Mg)TiO3 (其介電常數為27) 做研究。(Zn,Mg)TiO3 具有良好的微波介電特性,然而為了能與LTCC材料共燒,分別添加3ZnO-B2O3玻璃和Bi2O3以降低其燒結溫度。同時為了了解 (Zn,Mg)TiO3 作為電容設計基材的可行性,研究中以 (Zn,Mg)TiO3 為基材做成積層陶瓷電容器 (MLCC, Multilayer Ceramic Capacitor),並使用不同比例的銀鈀合金作為電容的內電極來進行特性分析,其中針對銀的擴散 (silver migration) 導致MLCC信賴度 (reliability) 變差的現象有深入的討論。
第三部分則主要著眼於 2.4 GHz 與 5.2 GHz 帶通濾波器的設計及實作。結果顯示,利用短路耦合傳輸線、並聯諧振腔與輸入輸出間的回授電容效應可實現具有高衰減速度與止帶抑制之二階三零點濾波器,在其中心頻率 5.15~5.35 GHz 的插入損耗僅為 2.0 dB,濾波器尺寸也只有 2.5 mm x 2.0 mm x 1.0 mm。此外,以複合式的介電材料共燒實現半集總式帶通濾波器,實作的結果顯示,利用複合式的介電材料共燒所實現的濾波器在通帶 2.4 GHz 頻率點輸入損耗約為 2 dB,衰減量在 1.9 GHz 與 5.0 GHz 分別為 42 dB 及 35 dB,元件尺寸則為 2.0 mm x 1.2 mm,此結果驗證使用複合式的介電材料共燒來實現半集總式帶通濾波器的確可同時達到低損耗特性與縮小元件尺寸訴求。
Microwave filters are one of the most important components in receivers, they are used to select or confine the RF/microwave signals within assigned spectral limits. Recently, in the wireless and mobile communication system, trends toward miniaturization, higher performance, and lower electric power consumption have become increasingly prominent. Low temperature co-fired ceramics (LTCC) have become an attractive technology for electronic components and substrates because it possesses several advantages, such as a low dielectric constant, low dielectric losses, high thermal conductivity, high mechanical strength, and the ability of integrating passive elements into the substrate. These advantages provide a promising way to realize high quality and compact microwave components.
In this dissertation, we describe a systematic design and analysis procedure towards the successful implementation of three-dimensional LTCC multilayer bandpass filters at microwave frequencies. The work has been divided into three major parts. In the first part, the phase evolution and dielectric properties of the commercial LTCC dielectric have been studied. As LTCC is a glass-ceramic composite, after firing the glass amount is reduced by crystallization. The amount and type of crystalline and amorphous phases in the fired LTCC substrate determine the final properties. Therefore, the phase evolution and dielectric properties at various firing temperatures of the commercial BaAl2Si2O8-based LTCC material, which was used for microwave filter design in the dissertation were studied. The results show that there are three crystalline phases, Al2O3, TiO2, and Zn2SiO4 existing in the as-received powder. As the firing temperature increased, Al2O3, TiO2, and Zn2SiO4 gradually vanished and a new crystalline phase BaAl2Si2O8 was formed from 850oC and its quantity increased with the firing temperatures. The degree of crystallinity of the as-received powder was around 53 wt% and gradually increased, reaching a maximum of ~96 wt% at 900oC. As the firing temperature increased, the dielectric constant of the fired specimens decreased, but the quality factor increased. The decrease in dielectric constant is attributed to the porous microstructure and the increase of the quality factor is attributed to the increasing degree of crystallinity at high temperatures. However, the porous microstructure deteriorates the mechanical strength of the fired specimens. So a trade-off between the dielectric properties and the mechanical strength should be made.
The second part describes the characteristics of (Zn,Mg)TiO3 dielectric, which has a dielectric constant of 27 and was used as the dielectric material for embedded capacitor in the microwave filter design to minimize the component size. To co-fire (Zn,Mg)TiO3 dielectric with LTCC material, 3ZnO-B2O3 glass and Bi2O3 were used as sintering aid to lower the sintering temperature of (Zn,Mg)TiO3 material, respectively. MLCC (Multilayer Ceramic Capacitor) was prepared with (Zn,Mg)TiO3 dielectric and electrodes in various silver-palladium ratios. The diffusion of silver into the dielectric will cause a serious problem in long-term reliability of MLCC, which uses Ag or Ag/Pd as the inner electrode. The electrochemical migration of silver can be significantly reduced in the presence of 15-40% palladium. However, the high ratio of palladium in silver-palladium alloy will cause high conductor loss, which makes the component inappropriate to be used in microwave frequencies. Low palladium content Ag/Pd alloys of Ag/Pd = 99/01, 97/03, 95/05, and 90/10 were used as the inner electrode in (Zn,Mg)TiO3 MLCC to understand if low palladium content (£ 10%) in Ag/Pd electrode is still able to stabilize the silver migration to avoid the degradation of insulation resistance in (Zn,Mg)TiO3 MLCC when sinter at 925oC for 2h. The results show that the lifetime of (Zn,Mg)TiO3 MLCC is inversely proportional to the silver content in Ag/Pd inner electrode. The diffusion of silver into (Zn,Mg)TiO3 dielectric during sintering and the migration of silver during reliability test at 140oC/200 V are both responsible for the short lifetime of (Zn,Mg)TiO3 MLCC. In terms of using Bi2O3 as the sintering aid, a Bi,Sb-rich secondary phase exists at the triple junction and also a trace of silver is detected in Bi,Sb-rich phase only when Ag/Pd = 99/01 alloy was used as the inner electrode in (Zn,Mg)TiO3 MLCC. The degradation of insulation resistance in (Zn,Mg)TiO3 MLCC is attributed to the excessive formation of oxygen vacancies from the substitution of Ag1+ to Bi3+ or Sb5+. The excessive oxygen vacancies and decreasing Ag-Pd bond strength in (Zn,Mg)TiO3 MLCC with high silver content Ag/Pd electrodes lower the activation energy of (Zn,Mg)TiO3 dielectric, as a result, the silver migration is enhanced.
In the last section, a 5.25 GHz LTCC bandpass filter and a 2.4 GHz semi-lump bandpass filter are implemented with BaAl2Si2O8-based LTCC substrate and the hybrid dielectrics of BaAl2Si2O8-based LTCC and (Zn,Mg)TiO3 dielectric. The designed compact combline LTCC filter possesses three attenuation poles, including two in the lower stopband and one in the higher stopband. The insertion loss at passband is less than 2 dB and the out-of-band rejection is very shape. Besides, the designed semi-lump filter was implemented by using LTCC technology with different dielectrics. In which, when the multilayer architecture of the 2.4 GHz semi-lump bandpass filter was implemented by hybrid dielectrics, that is to realize the striplines (inductors) on BaAl2Si2O8-based LTCC dielectric (k = 7.8) to enhance the quality factor of resonators and to realize the capacitors on relatively high-k (Zn,Mg)TiO3 dielectric to decrease the component size, a compact and superior filter can be made. The results show that the designed semi-lump filter demonstrates a compact size of 2.0 mm ´ 1.2 mm and superior characteristics of 2 dB insertion loss at 2.4 GHz and 42 dB and 35 dB attenuation at 1.9 GHz and 5 GHz, respectively, which is better than that of filters implemented by single dielectric, such as BaAl2Si2O8-based LTCC or (Zn,Mg)TiO3 dielectric.
1. Y. Imanaka, Multilayer Low Temperature Cofired Ceramics (LTCC) Technology, Springer-Verlag, New York (2005) pp.1-17.
2. Y. S. Cho, K. W. Hang, M. F. Barker, P. J. Ollivier, C. B. Wang, D. I. Amey, K. Souders, and C. R. Needes,"New Pb-Free LTCC System for Automotive and Telecommunication Applications”; pp. 226-230 in Proceedings of IMAPS Conference and Exhibition on Ceramic Interconnect Technology, Denver, CO, USA, 2004.
3. Y. S. Cho, K. W. Hang, C. B. Wang, K. E. Souders, D. Majumdar, D. Amey, and C. R. Needes,"High k LTCC System for High Frequency Applications"; pp. 195-199 in Proceedings of IMAPS Ceramic Interconnect Technology Conference, Denver, CO, USA, 2003. International Microelectronics and Packaging Society (IMAPS), Washington D.C.
4. K. Kageyama, K. Saito, H. Murase, H. Utaki, and T. Yamamoto,"Tunable Active Filters Having Multilayer Structure Using LTCC," IEEE Trans. Microwave Theory Tech., 49 [12] 2421-2424 (2001).
5. P. Barnwell, W. Zhang, J. Lebowitch, K. Jones, N. MacDonald, C. Free, and Z. Tian, “An investigation of the properties of LTCC materials and compatible conductors for their use in wireless applications”; pp.659-664 in Proc. Intern. Symp. Microelectronics. IMAPS, Boston, MA, USA, 2000.
6. H. T. Kim, J. D. Byun, and Y. Kim, “Microstructure and Microwave Dielectric Properties of Modified Zinc Titanates (II),” Mater. Res. Bull., 33 [6] 975–986 (1998).
7. S. Nishigaki, U. Goebel, and W. Roethlingshoefer, “LTCC Material Systems and Its Application in Automotive ECU’s”; pp.231-237 in Proceedings of IMAPS Conference and Exhibition on Ceramic Interconnect Technology, Denver, CO, USA, 2004.
8. K. A. Peterson, K. D. Patel, C. K. Ho, S. B. Rohde, C. D. Nordquist, C. A. Walker, B. D. Worblewski, and M. Okandan, “Novel Microsystem Applications with New Techniques in Low-Temperature Co-Fired Ceramics, ” Int. J. Appl. Ceram. Technol., 2 [5] 345-363 (2005).
9. J. U. Knickerbocker, “Overview of the Glass-Ceramic/Copper Substrate-A High-Performance Multilayer Package for the 1990s,” Am. Ceram. Soc. Bull., 71 [9] 1393-1401 (1992).
10. R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74 [5] 895-908 (1991).
11. K. G. Ewsuk, L. W. Harrison, and F. J. Walczak, “Sintering Glass-Filled Ceramic Composites; Effects of Glass Properties”; pp. 969-977 in Ceramic Transactions, Vol. 1, Ceramic Powder Science II,B. Edited by G. L. Messing, E. R. Fuller Jr., and H. Hausner. American Ceramic Society, Westerville, OH, 1988.
12. K. G. Ewsuk, “Ceramic-Filled-Glass Composite Sintering”; pp. 279-295 in Ceramic Transactions, Vol. 15, Materials and Processes for Microelectronic Systems. Edited by K. M. Nair, R. Pohanka, and R. C. Buchanan. American Ceramic Society, Westerville, OH, 1990.
13. R. M. German, “Strength Loss and Distortion in Liquid Phase Sintering”; pp. 259-264 in Sintering Science and Technology, Edited by R. M. German, G. L. Messing, and R. G. Cornwall. Penn State University, University Park, PA, 2000.
14. S. Kemethmüller, M. Hagymasi, A. Stiegelschmitt, and A. Roosen, “Viscous Flow as the Driving Force for the Densification of Low-Temperature Co-Fired Ceramics,” J. Am. Ceram. Soc., 90 [1] 64-70 (2007).
15. J. H. Jean and J. I. Shen, “Binary Crystallizable Glass Composite for Low-Dielectric Multilayer Ceramic Substrate,” Jpn. J. Appl. Phys., 35 [7] 3942-3946 (1996).
16. M. Eberstein, W. Schiller, O. Dernovsek, and W. Wersing, “Adjustment of Dielectric Properties of Glass-Ceramic Composites Via Crystallization, ” Glastech. Ber.-Glass Sci. Technol., 73 [C1] 371-373 (2000).
17. B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402-410 (1960).
18. W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476-485 (1970).
19. N. M. Alford and S. J. Penn, “Sintered Alumina with Low Dielectric Loss,” J. Appl. Phys., 80 [10] 5895-5898 (1996).
20. S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 [7] 1885-1888 (1997).
21. A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, and N. M. Alford, “Microwave Dielectric Loss of Titanium Oxide,” J. Am. Ceram. Soc., 83 [1] 95–100 (2000).
22. L. C. Hoffman, “Glass-Ceramics Containing BaAl2Si2O8 Crystalline Phase”; U. S. Patent No. 3,586,522, June 22, 1971.
23. L. C. Hoffman, “Crystallizable Dielectrics in Multilayer Structures for Hybrid Microcircuits: A Review”; pp. 249–253 in Advances in Ceramics, Vol. 26, Ceramic Substrates and Packages for Electronic Applications. Edited by M. F. Yan, K. Niwa, H. M. O’Bryan Jr., and W. S. Young. American Ceramic Society, Westerville, OH, 1989.
24. Y. Guo, H. Ohsato, K. Kakimoto, “Characterization and Dielectric Behavior of Willemite and TiO2-Doped Willemite Ceramics at Millimeter-Wave Frequency,” J. Eur. Ceram. Soc., 26 [10-11] 1827-1830 (2006).
25. H. C. Lin and W. R. Foster, “Studies in the System BaO-Al2O3-SiO2 I. The Polymorphism of Celsian,” Am. Mineral., 53 [1-2] 134-144 (1968).
26. R. E. Newnham and H. D. Megaw, “The Crystal Structure of Celsian. (Barium Feldspar),” Acta Cryst., 13 [4] 303-312 (1960).
27. K. J. D. MacKenzie and T. Kemmitt, “Evolution of Crystalline Aluminates from Hybrid Gel-Derived Precursors Studied by XRD and Multinuclear Solid-State MAS NMR, I. Celsian, BaAl2Si2O8,” Thermochim. Acta, 325 [1] 5-12 (1999).
28. J. C. Debsikdar, “Gel to Glass Conversion and Crystallization of Alkoxy Derived Barium Aluminosilicate Gel,” J. Non-Cryst. Solids, 144 [2-3] 269-276 (1992).
29. Y. Shimada, K. Ustumi, M. Suzuki, and H. Takamizowa, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon. Hybrids Manuf. Technol., 6 [4] 382-388 (1983).
30. N. P. Bansal and J. A. Setlock, “Fabrication of Fiber-Reinforced Celsian Matrix Composites,” Composites Part A, 32 [8] 1021-1029 (2001).
31. L. Navias and R. L. Green, “Dielectric Properties of Glasses at Ultra-High Frequencies and Their Relation to Composition,” J. Am. Ceram. Soc., 29 [10] 267-276 (1946).
32. M. Valant and D. Suvorov, “Microstructural Phenomena in Low-Firing Ceramics,” Mater. Chem. Phys., 79 [2] 104-110 (2003).
33. I. H. Im, H. S. Chung, D. S. Paik, C. Y. Park, J. J. Park, and S. G. Bae, “Multilayer Piezoelectric Actuator with AgPd Internal Electrode,” J. Eur. Ceram. Soc., 20 [7] 1011-1015 (2000).
34. S. S. Cole, W. H. Payne, J. Miller, and V. Venkatessin, “Silver Loss in Multilayer Capacitors”; p.254 in Proceedings of the 81st Annual Meeting of the American Ceramic Society, Cincinnati, OH, 1979.
35. H. Kanai, O. Furukawa, S. Nakamura, and Y. Yamashita, “Role of PbO and Ag on Insulation Resistance Degradation in Relaxor-Based MLCs,” J. Am. Ceram. Soc., 78 [6] 1657-1660 (1995).
36. J. C.Lin and J. Y. Chan, “On the Resistance of Silver Migration in Ag-Pd Conductive Thick Film under Humid Environment and Applied d.c. Field,” Mater. Chem. Phys., 43 [3] 256-265 (1996).
37. H. C. Ling and A. M. Jackson, “Correlation of Silver Migration with Tempertaure-Humidity-Bias (THB) Failure in Multilayer Ceramic Capacitor,” IEEE Trans. Compon. Hybrids Manuf. Technol., 12 [1] 130-137 (1989).
38. G. M. Berube, G. Banerjee, M. Challingsworth, and M. Chambergo, “Ultra-Low Fire Palladium-Silver Electrode Powders for COG Dielectric”; pp. 364-369 in 8th Int. Symp. on Advanced Packaging Materials, Atlanta, GA, 2002.
39. A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, “Ceramic-Electrode Interaction in PZT and PNN-PZT Multilayer Piezoelectric Ceramics with Ag/Pd 70/30 Inner Electrode,” J. Mater. Sci., 32 [11] 3257-3262 (1997).
40. S. F. Wang, J. P. Dougherty, W. Huebner, and J. G. Pepin, “Silver-Palladium Thick-Film Conductors,” J. Am. Ceram. Soc., 77 [12] 3051-3072 (1994).
41. N. Halder, A. Das Sharma, S. K. Khan, A. Sen and H. S. Maiti, “Effect of Silver Addition on the Dielectric Properties of Barium Titanate Based Low Temperature Processed Capacitors,” Mater. Res. Bull., 34 [4] 545-550 (1999).
42. R. Zuo, L. Li, and Z. Gui, “Effects of BaTiO3 Additive on Densification Mechanism of Silver-Palladium Paste,” Mater. Chem. Phys., 74 [2] 182-186 (2002).
43. J. P. Maher, R. T. Jacobsen, and R. E. Lafferty, “High-Frequency Measurement of Q-Factors of Ceramic Chip Capacitors,” IEEE Trans. Comp. Hybrids, & Manuf. Tech., 1 [3] 257-264 (1978).
44. C. Y. Chen and W. H. Tuan, “Evaporation of Silver during Cofiring with Barium Titanate,” J. Am. Ceram. Soc., 83 [7] 1693-98 (2000).
45. D. J. Lewis, D. Gupta, and M. R. Notis, ”Diffusion of 110mAg Tracer in Polycrystalline and Single-Crystal Lead-Containing Piezoelectric Ceramics,” J. Am. Ceram. Soc., 84 [8] 1777-1784 (2001).
46. R. Zuo, L. Li and Z. Gui, ” Influence of Silver Migration on Dielectric Properties and Reliability of Relaxor Based MLCCs,” Ceram. Int., 26, 673-676 (2000).
47. R. Zuo, L. Li and Z. Giu, “Cofiring Behaviors Between BaTiO3-Modified Silver-Palladium Electrode and Pb-Based Relaxor Ferroelectric Ceramics,” Mater. Chem. Phys., 70 [3] 326-329 (2001).
48. K. J. D. MacKenzie and F. Golestani-Fard, “Formation and Electrical Properties of Silver Antimony Oxide,” J. Therm. Anal. Calorim., 15 [2], 333-342 ( 1979).
49. J. P. Gambino, W. D. Kingery, G. E. Pike, L. M. Levinson, and H. R. Philipp, “Effect of Heat Treatments on the Wetting Behavior of Bismuth-Rich Intergranular Phases in ZnO:Bi:Co Varistors,” J. Am. Ceram. Soc., 72[4] 642-645 (1989).
50. H. Chazono and H. Kishi, “dc-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni internal Electrode: Impedance Analysis and Microstructure,” Jpn. J. Appl. Phys., 40 [9B] 5624-5629 (2001).
51. K. Morita, Y. Mizuno, H. Chazono, and H. Kishi, “Effect of Mn Addition on dc-Electrical Degradation of Multilayer Ceramic Capacitor with Ni Internal Electrode,” Jpn. J. Appl. Phys., 41 [11B] 6957-6961 (2002).
52. H. Chazono and H. Kishi, “Effect of Ho Amount on Microstructure and Electrical Properties for Ni-MLCC,” Key Eng. Mater., 248, 183-186 (2003).
53. D. F. K. Hennings, “Dielectric Materials for Sintering in Reducing Atmospheres,” J. Eur. Ceram. Soc., 21, 1637-1642 (2001).
54. K. Albertsen, D. Hennings, and O. Steigelmann, “Donor-Acceptor Charge Complex Formation in Barium Titanate Ceramics: Role of Firing Atmosphere,” J. Electroceram., 2:3, 193-198 (1998).
55. G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D. E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, “Oxygen Nonstoichiometry and Dielectric Evolution of BaTiO3. Part II-Insulation Resistance Degradation under Applied dc Bias,” J. Appl. Phys., 96 [12] 7500-7508 (2004).
56. H. W. Yaot, K. A. ZakiS, A. E. Atiat, and T. Dolantt, “Improvement of Spurious Performance of Combline Filters”; pp. 1099-1102 in IEEE MTT-S Int. Microwave Symp.Dig., Denver, CO, USA, 1997.
57. G. L. Matthaei, “Comb-Line Band-Pass Filters of Narrow or Moderate Bandwidth,” Microwave J., 6, 82-91 (1963).
58. E. G. Cristal, “Coupled Circular Cylindrical Rods Between Parallel Ground Planes,” IEEE Trans. Microwave Theory Tech., 12 [4] 428-439 (1964).
59. R. Levy and J. D. Rhodes, ‘‘A Comb-Line Elliptic Filter,” IEEE Trans. Microwave Theory Tech., 19 [1] 26-29 (1971).
60. R. J. Wenzel, “Synthesis of Combline and Capacitively Loaded Interdigital Bandpass Filters of Arbitrary Bandwidth,” IEEE Trans. Microwave Theory Tech., 19 [8] 678-686 (1971).
61. L. K. Yeung and K. L. Wu, “A Compact Second-Order LTCC Bandpass Filter with Two Finite Transmission Zeros,” IEEE Trans. Microwave Theory Tech., 51 [2] 337-341(2003).
62. T. Ishizaki, M. Fujita, H. Kagata, T. Uwano, and H. Miyake, “A Very Small Dielectric Planar Filter for Portable Telephones,” IEEE Trans. Microwave Theory Tech., 42 [11] 2017-2022 (1994).
63. L. K. Yeung and K. L. Wu, “An Integrated RF Balanced-Filter with Enhanced Rejection Characteristics”; pp. 713-716 in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, USA, 2005.
64. M. G. Banciu, R. Ramer, and A. Loachim, “Microstrip Filters Using New Compact Resonators,” Electron. Lett., 38 [5] 228-229 (2002).
65. J. W. Sheen, “LTCC-MLC Duplexer for DCS-1800,” IEEE Trans. Microwave Theory Tech., 47 [9] 1883-1890 (1999).
66. A. F. Sheta, K. Hettak, J. P. Coupez, C. Person, S. Toutain, and J. P. Blot, “A New Semi-Lumped Microwave Filter Structure”; pp. 383-386 in IEEE MTT-S Int. Microwave Symp.Dig. Vol. 2, Orlando, FL, USA, 1995.
67. V. Piatnitsa, E. Jakku, and S. Leppaevuori, “Design of a 2-Pole LTCC Filter for Wireless Communications,” IEEE Trans. Wireless Commun., 3 [2] 379-381 (2004).
68. A. Simine, V. Piatnitsa, A, Lapshin, E. Jakku, D. Kholodnyak, S. Leppaevuori, and I. Vendik, “Design of Quasi-Lumped-Element LTCC Filters and Duplexers for Wireless Communications”; pp.911-914 in 33rd Eur. Microwave Conf., Munich, Germany, 2003.
69. J. W. Sheen, “A Compact Semi-Lumped Low-Pass Filter for Harmonics and Spurious Suppression,” IEEE Microwave and Guided Wave Letters, 10 [3] 92-93 (2000).
70. C. W. Tang, “Harmonic-Suppression LTCC Filter with the Step-Impedance Quarter-Wavelength Open Stub,” IEEE Trans. Microwave Theory Tech., 52 [2] 617-624 (2004).
71. W. Y. Leung, K. K. M. Cheng, and K. L. Wu, “Design and Implementation of LTCC Filters with Enhanced Stop-Band Characteristics for Bluetooth Applications”; pp. 1008-1011 in Microwave Conf., APMC, Asia-Pacific, Taipei, Taiwan, 2001.
72. K. L. Wu, Y. Ding and D. G. Fang, “A Parameter Extraction Technique for MM/FEM Analysis of Multilayered RF Passives Using TRL Calibration, ” IEEE Microwave Compon. Lett., 14 [9] 452-454 (2004).
73. A. Sutono, D. Heo, Y. J. E. Chen, and J. Laskar, “High-Q LTCC-Based Passive Library for Wireless System-on-Package (SOP) Module Development,” IEEE Trans. Microwave Theory Tech., 49 [10] 1715-1724 (2001).
74. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures; pp.651-723, Artech House, Dedham, 1980.
74. S. Tomazic and A. Umek, “A Simple Formula for Calculation of Power Loss in Digital Transmission Lines,” IEEE Trans. Commun., 40 [3] 484-486 (1992).
75. M. Nakatsugawa, A. Kanda, H. Okazaki, K. Nishikawa, and M. Muraguchi, “Line-Loss and Size-Reduction Techniques for Millimeter-Wave RF Front-End Boards by Using a Polyimide/Alumina -Ceramic Multilayer Configuration,” IEEE Trans. Microwave Theory Tech., 45 [12] 2308-2315 (1997).