簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Kuan-Ting
論文名稱: 應用於太陽能光電模組之新型隔離式高升壓轉換器
A Novel Isolated High Step-Up Converter for Photovoltaic Modules
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 61
中文關鍵詞: 氮化鎵(GaN)隔離轉換器高升壓倍壓技術
外文關鍵詞: Gallium nitride (GaN), Isolated converter, High step-up, Voltage-multiplier technology
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一新型隔離式高升壓轉換器,電路架構採用主動切換式電感與倍壓整流技術來實現高升壓比,同時具有架構簡單與易於控制,且操控於低開關責任週期與低匝數比下即可得到高升壓等優點,使用寬能隙功率元件氮化鎵(GaN),使轉換器操作於高頻下也能保持高效率,進而縮小體積提升整體功率密度。
    本論文內容包含說明轉換器操作在連續導通模式下之動作分析,與分析此轉換器在不同開關責任週期與匝數比下的電壓轉換比以及元件參數設計、開關元件選用、驅動電路設計,並以SIMPLIS模擬驗證其可行性。
    最後,參照太陽能光電模組規格,研製一輸入電壓40V、輸出電壓400V、輸出功率400W,操作頻率為500 kHz之電路雛型,並藉由實驗結果驗證此架構特性與效率,在200W時最高效率可達92%。

    This thesis presents a novel isolated high step-up converter. Without operating under a high duty cycle or a high turn ratio, using the active switched-inductor and voltage multiplier rectifier technology can achieve a high voltage gain. Also, the advantages of this converter have high voltage gain, simple structure, and easy control. The thesis includes an analysis of the operating principle of this converter, the component parameter design, the gate driver circuit design, and the voltage ratio of the proposed converter under the different turns ratio and duty cycles. Simulated results are obtained by the software SIMPLIS.
    Finally, a prototype circuit with 40V/400V, the output power of 400W, and a switching frequency of 500 kHz are implemented to verify the feasibility of the proposed converter. The maximum efficiency is 92% at Po = 200 W.

    摘要 I Abstract II Acknowledgment III Content IV List of Tables VI List of Figures VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Thesis Outline 5 CHAPTER 2 REVIEW OF VOLTAGE-BOOSTING TOPOLOGIES 6 2.1 Review of Voltage-Boosting Techniques 6 2.1.1 Cascaded Boost 6 2.1.2 Switched Inductor 7 2.1.3 Switched Capacitor 8 2.1.4 Voltage Lift 9 2.1.5 Magnetic Coupling 10 2.1.6 Voltage Multiplier Rectifier 11 2.1.7 Summary 12 2.2 Non-Isolated Converter 13 2.2.1 Boost Converter with Active Switched Inductor 13 2.2.2 Boost Converter with Coupled Inductor 14 2.3 Isolated Converter 15 2.3.1 Boost Converter with Voltage Doubler Rectifier 15 2.3.2 Boost Converter with Voltage Lift 16 2.4 Summary 17 CHAPTER 3 ANALYSIS AND DESIGN OF A HIGH STEP-UP CONVERTER 18 3.1 The Proposed Converter 18 3.2 Principles of Operation and Analysis 20 3.3 Steady-State Analysis of Proposed Converter 24 3.3.1 Voltage Gain Expression 25 3.3.2 Voltage Stress Analysis 26 3.3.3 Transformer Turns Ratio and Duty Cycle 29 3.3.4 Compared GaN-MOSFET with Si-MOSFET 30 3.3.5 Gate Driver Circuit 31 3.4 Component Parameter Design 32 3.4.1 Design of Transformer 32 3.4.2 Design of Inductors 35 3.4.3 Design of Capacitors 36 CHAPTER 4 SIMULATION AND EXPERIMENTAL RESULTS 38 4.1 Specifications of The Proposed Prototype Circuit 38 4.2 Simulation Results 40 4.3 Experimental Results 45 4.4 Power Losses Analysis 51 4.5 Efficiency 55 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 56 5.1 Conclusions 56 5.2 Future Works 57 REFERENCES 58

    [1] T. Matsumoto and K. Tanaka, "Smart city design method for feasible energy storage introduction toward 100% renewable electricity," 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-5, 2021.
    [2] M. A. Usova and V. I. Velkin, "Possibility to use renewable energy sources for increasing the reliability of the responsible energy consumers on the enterprise," 2018 17th International Ural Conference on AC Electric Drives (ACED), pp. 1-4, 2018.
    [3] A. Blakers, M. Stocks, B. Lu, and C. Cheng, "The low cost of balancing solar PV and wind," 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), pp. 0617-0620, 2021.
    [4] G. Krzywinski, "Integrating storage and renewable energy sources into a DC microgrid using high gain DC DC boost converters," 2015 IEEE First International Conference on DC Microgrids (ICDCM), pp. 251-256, 2015.
    [5] I. J. Hashim, "A new renewable energy index," 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA), pp. 229-232, 2021.
    [6] C. Zhang, S. Du, and Q. Chen, "A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations," in IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3775-3783, Sept 2013.
    [7] M. A. Herrera and A. Balal, "Implementing multilevel inverters and multiport DC-DC converters for microgrids," 2021 IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 61-65, 2021.
    [8] K. C. Tseng, C. C. Huang, and C. A. Cheng, "A high step-up converter with voltage-multiplier modules for sustainable energy applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 1100-1108, Dec 2015.
    [9] K. Zaoskoufis and E. C. Tatakis, "Isolated ZVS-ZCS DC–DC high step-up converter with low-ripple input current," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 4, pp. 464-480, Oct 2021.
    [10] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, "A safety enhanced, high step-up DC–DC converter for AC photovoltaic module application," in IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1809-1817, April 2012.
    [11] M. Orkisz, "Estimating effects of individual PV panel failures on PV array output," in IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4825-4832, Sept-Oct 2018.
    [12] F. P. Hartwell, J. F. McPartland, and B. J.McPartland, National Electrical Code 2017 Handbook (NEC), 29th ed. NewYork, NY, USA: McGraw-Hill, 2017, ch. 6, pp. 1495-1515.
    [13] P. McNutt, W. R. Sekulic, and G. Dreifuerst, "Solar/photovoltaic DC systems: Basics and safety," 2018 IEEE IAS Electrical Safety Workshop (ESW), pp. 1-9, 2018.
    [14] S. Pingel, O. Frank, M. Winkler, S. Daryan, T. Geipel, H. Hoehne, and J. Berghold, " Potential induced degradation of solar cells and panels," 2010 35th IEEE Photovoltaic Specialists Conference, pp. 2817-2822, 2010.
    [15] H. F. B. Miranda, L. P. da Costa, S. O. Soares, and J. V. da Silva, "Potential induced degradation (PID): Review," 2020 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D LA), pp. 1-6, 2020.
    [16] P. Hacke, K. Terwilliger, R. Smith, S. Glick, J. Pankow, M. Kempe, S. K. I. Bennett, and M. Kloos, "System voltage potential-induced degradation mechanisms in PV modules and methods for test," 2011 37th IEEE Photovoltaic Specialists Conference, pp. 814-820, 2011.
    [17] D. Gautam, A. K. Sharma, and J. Shukla, "A review of voltage boosting techniques for step-up DC-DC converter," IJIREEICE, vol. 7, no. 6, pp. 35-41, June 2019.
    [18] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications," in IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, Dec 2017.
    [19] L. Huber and M. M. Jovanovic, "A design approach for server power supplies for networking applications," APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), pp. 1163-1169, 2000.
    [20] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
    [21] F. L. Luo and H. Ye "Positive output super-lift converters," in IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 105-113, Jan 2003.
    [22] Q. Zhao, F. Tao, and F. C. Lee, "A front-end DC/DC converter for network server applications," 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), pp. 1535-1539, 2001.
    [23] P. H. Kuo, T. J. Liang, K. C. Tseng, J. F. Chen, and S. M. Chen, "An isolated high step-up forward/flyback active-clamp converter with output voltage lift," 2010 IEEE Energy Conversion Congress and Exposition, pp. 542-548, 2010.
    [24] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC–DC converters with high step-up voltage gain," in IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug 2009.
    [25] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up DC–DC converter for a microgrid system," in IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1127-1136, April 2011.
    [26] M. Nymand and M. A. E. Andersen, "High-efficiency isolated boost DC–DC converter for high-power low-voltage fuel-cell applications," in IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 505-514, April 2011.
    [27] T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, "Novel isolated high-step-up DC–DC converter with voltage lift," in IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1483-1491, April 2013.
    [28] B. K. Rhea, L. L. Jenkins, F. T. Werner, W. E. Abell, and R. N. Dean, "Two year reliability validation of GaN power semiconductors in low voltage power electronics applications," 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 206-209, 2015.
    [29] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," in IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 907-914, May 2003.
    [30] J. Puukko, J. Xu, and L. Liu, "Consideration of flyback converter using GaN devices," 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 196-200, 2015.
    [31] 吳義利,切換式電源轉換器:原理與實用設計技術(實例設計導向),文笙書局股份有限公司,民國一百零七年。
    [32] Infineon, IRFP150NPBF, 2004, datasheet.
    [33] Infineon, IPW60R120C7, 2015, datasheet.
    [34] GaN System, GS61004B-MR, 2004, datasheet.
    [35] GaN System, GS-065-030-2-L-MR, 2021, datasheet.
    [36] Infineon, 1EDF5673F, 2021, datasheet.
    [37] K. T. Chen, J. F. Chen, T. J. Wang, and H. Liao, "Study and implementation of high frequency cast resin transformer applied for medium-voltage solid-state transformer," 2021 IEEE International Future Energy Electronics Conference (IFEEC), pp. 1-6, 2021.
    [38] TDK, PQ series of ferrite cores, 2014, datasheet.

    無法下載圖示 校內:2027-08-17公開
    校外:2027-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE