| 研究生: |
楊子康 Yang, Tzu-Kang |
|---|---|
| 論文名稱: |
標稱最大粒徑對多孔隙瀝青混凝土工程性的影響 Effect of Nominal Maximum Aggregate Size on Engineering Properties of Porous Asphalt Concrete |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 多孔性瀝青混凝土 、標稱最大粒徑 |
| 外文關鍵詞: | PAC, Nominal Maximum Aggregate Size |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內多孔隙瀝青混凝土(PAC),以標稱最大粒徑(Nominal Maximum Aggregate Size, NMAS)19mm為主,鋪面厚度約3~5cm;但NMAS 12.5mm之PAC鋪面之經驗較有限。本研究主要使用改質III型瀝青,配合標稱最大粒徑19mm、12.5mm及9.5mm之PAC級配,依照日本排水性瀝青混凝土配合設計進行配比,並製作試體進行實驗室工程性質試驗與績效評估,比較其耐久性、功能性及安全性。並針對PAC之抗車轍能力進行分析,以標稱最大粒徑12.5mm之PAC級配,使用三種不同黏滯度之改質III型瀝青及傳統瀝青AR80製作之車轍試體進行相關的分析。
研究結果顯示,耐久性方面,NMAS 19mm,NMAS 12.5mm及NMAS 9.5mm級配PAC之穩定值分別為591、620及544kgf;間接張力強度分別為0.70、0.77及0.51MPa;平均回彈模數分別為2300、2352及1293MPa,顯示NMAS 19mm及NMAS 12.5mm較NMAS 9.5mm級配之PAC強度較強,有較佳的耐久性。功能性方面,NMAS 19mm,NMAS 12.5mm及NMAS 9.5mm級配PAC之滲透係數分別為0.18、0.13及0.16 cm/s,皆大於規範值0.01 cm/s十倍以上,顯示三種不同標稱最大粒徑之PAC級配皆有良好的功能性。安全性方面,NMAS 19mm,NMAS 12.5mm及NMAS 9.5mm級配PAC之BPN值分別為67、73及68;平均紋理深度分別為1.70、1.24及0.97mm,顯示PAC在安全性方面皆有一定水準,且使用較大標秤粒徑之PAC級配具有較佳的安全性。車轍輪跡試驗部分,NMAS 19mm、NMAS 12.5mm及NMAS 9.5mm級配之動穩定值分別為3150、2864及2739(次/mm),顯示使用較大標稱最大粒徑的級配有較佳的抗車轍能力。
Porous asphalt concrete (PAC) in the country is based on nominal maximum aggregate size(NMAS) of 19mm.The thickness of 19mm NMAS PAC is about 3~5cm.In this study, engineering properties of three types of 19mm NMAS, 12.5mm NMAS and 9.5mm NMAS PAC with type III modified asphalt were evaluated by means of conventional laboratory test.Assessment is divided into durability, functionality and safety.In addition, 12.5mm NMAS PAC with three types viscosity of III modified asphalt and AR80 straight-run asphalt was carried out to assess the effect of rutting resistance.
The result showed, in durability respect, the Marshall stability of 19mm NMAS, 12.5mm NMAS and 9.5mm NMAS PAC is 591, 620 and 544kgf respectively;Indirect tensile strength is 0.70, 0.77 and 0.51MPa respectively;Resilient modulus is 2300, 2352 and 1293MPa respectively, 19mm NMAS and 12.5mm NMAS PAC have better Strength than 9.5mm NMAS PAC.In functionality respect, the permeability coefficient of 19mm NMAS, 12.5mm NMAS and 9.5mm NMAS PAC is 0.18, 0.13 and 0.16 cm/s respectively, the result showed PAC has good functional.In safety respect, the British pendulum tester(BPN) of 19mm NMAS, 12.5mm NMAS and 9.5mm NMAS PAC is 67, 73 and 68 respectively, the result showed PAC has good safety, and PAC with larger NMAS can provide better sliding properties on the pavement. In rutting resistance respect, the dynamic stability of 19mm NMAS, 12.5mm NMAS and 9.5mm NMAS PAC is 3150, 2864 and 2739(pass/mm), the result showed PAC with larger NMAS can provide better rutting resistance.
日本道路協會 (1996),「排水性鋪裝技術指針」,日本。
中華鋪面工程學會 (2005),「排水性瀝青混凝土」,桃園。
行政院公共工程委員會 (2004), “公共工程施工綱要規範,第02798章 ,「排水性改質瀝青混凝土鋪面」”,台北。
林志棟 (1983),「瀝青混凝土配合設計與其原理」,科技圖書公司,台北。
蔡攀鰲 (1985),「瀝青混凝土」,三民書局,台北。
Alvarez, A.E., Martin, A.E. and Estakhri, C. (2011) “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.
Alvarez, A.E., Martin, A.E., Estakhri, C. and Izzo, R. (2009) “Evaluation of Durability Tests for Permeable Friction Course Mixtures,” International Journal of Pavement Engineering, Vol.11, pp.49-60.
Brousseaud, Y. and Anfosso-Le’de’e, F. (2005) Review of Existing Low Noise Pavement Solutions in France, Sustainable Road Surfaces for Traffic Noise Control, European Commission.
Estakhri, C., Scullion, T., and Hu, X. (2011) "Design and Performance Evaluation of a Fine-Graded Permeable Friction Course," Transportation Research Board 91st Annual Meeting Washington, D.C.(on CD ROM)
Hanson, D. I., and James, R. S. (2004) Colorado “DOT Tire/Pavement Noise Study,” Report No.CDOT-DTD-R-2004-5, National Center for Asphalt Technology, Auburn University, Auburn, AL.
Lu, Q., and Harvey, J.T. (2011)"Laboratory Evaluation of Open-Graded Asphalt Mixes with Small Aggregates and Various Binders and Additives," Transportation Research Record: Journal of the Transportation Research Record, No.2209, pp. 61-69.
Lucy, A., E. Mahmoud, E. Masad, and A. Chowdhury. (2007) “Relationship of Aggregate Microtexture to Asphalt Pavement Skid Resistance,” Journal of Testing and Evaluation, Vol.35, pp.45-57.
McDaniel, R.S., Thornton, W.D. and Dominguez, J.G. (2004) “Field Evaluation of Porous Asphalt Pavement,” Report No. SQDH 2004-3, North Central Superpave Center, Purdue University, West Lafayette.
Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003) “Investigation of The Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
Nakanishi, H., Asano, K. and Goto, K. (2000) “Study on Improvement in Durability of Porous Asphalt Concrete,” Proceeding of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
Ongel, A., Kohler, E. and Harvey, J. (2008) “Principal Components Regression of Onboard Sound Intensity Levels,” Transportation Research Record: Journal of the Transportation Research Record, No.11, pp.459-466.
Panda, M. and Mazumdar, M. (1999) “Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Suresha, S.N., Varghese, G., and Shankar, A.U.R. (2009) “A Comparative Study on Properties of Porous Friction Course Mixes with Neat Bitumen and Modified Binders,” Construction and Building Materials, Vol.23, pp.1211-1217.
Watson, D.E., Cooley L.A., Moore, K.A. and Williams, K. (2004) “Laboratory Performance Testing of Open-Graded Friction Course Mixtures,” Transportation Research Record: Journal of Transportation Board, Vol.1891, pp. 40-47.
Yoshikuni, O. and Takshi, T. (1995) “Present Status Asphalt on Espressway in Japan,” Proceedings of 8th Road Engineering Association of Asia and Australasia, Vol.1, pp.301-306.
校內:2023-12-31公開