簡易檢索 / 詳目顯示

研究生: 陳建任
Chen, Jian-Ren
論文名稱: 具多鐵芯感應結構非接觸式油電混合車充電槳之研究
Study on Contactless Charging Paddle of Hybrid Electric Vehicle with Multi-Core Inductive Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: Reflex充電充電槳非接觸式
外文關鍵詞: charging paddle, reflex charging, contactless
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究非接觸式感應電能傳輸技術,並將其應用於具多鐵芯感應結構之非接觸式油電混合車充電槳,充電槳適用於潮溼或特殊環境對車子進行充電。文中首先針對非接觸式油電混合車充電槳之多鐵芯感應結構作模擬與分析,選用適當的鐵芯感應結構排列組合研製一長寬皆5.8公分方形充電槳與充電平台,並選用諧振電路以提高電能傳輸能力。為有效提升充電速度,採用Reflex快充電路架構,結合單晶片控制電路實現對鉛酸電池進行快速充電。初、次級側感應結構分別為多鐵芯感應結構建構而成,其兩者採用對位方式且氣隙1mm規格進行系統電路參數設計。經由實測驗證,本文所提非接觸式油電混合車充電槳確具可行性,對7Ah鉛酸電池作充電過程中之最高傳輸效率可達到74 %。

    This thesis investigates the contactless power transmission system for contactless charging paddle of hybrid electric vehicle with multi-core inductive structure. The Charging paddle can be applied in humid or particular environments. At the beginning, the multi-core inductive structures are simulated and analyzed. Select adequate multi-core inductive structures to make a 5.8 centimeters square charging paddle and charging receptacle, and adopt resonant circuit to improve power transfer ability. In order to accelerate charging speed, use Reflex charging algorithm which integrates microchip control circuit for a faster charging process on lead acid battery. The primary and secondary inductive structures are constructed by the multi-core inductive structure; both structures adopt position matching method and the air gap 1mm specification to design the system circuit parameter. This hybrid electric vehicle’s charging paddle system has proven to be practicable by experiments. The transmission efficiency can reach a maximum of 74 % when charging a 7Ah lead acid battery.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究背景與目 1 1-2 非接觸式感應電能傳輸技術之應用範疇 5 1-3 研究方法 8 1-4 論文大綱 9 第二章 非接觸感應耦合原理與電池充電策略 10 2-1 前言 10 2-2 感應線圈之動作原理 10 2-3 磁性材料 11 2-4 感應結構之耦合特性分析 13 2-5 感應結構與感應線圈之非理想效應與損耗 14 2-5-1 集膚效應 15 2-5-2 近接效應 17 2-6 變壓器等效模型之分析 19 2-7 變壓器耦合係數之求法 21 2-8 電池基本特性與充電策略 21 2-8-1 鉛酸電池之簡介 22 2-8-2 鉛酸電池之放電特性23 2-8-3 電池之充電策略 24 第三章 多鐵芯結構分析與設計 28 3-1 前言 28 3-2 非接觸式感應電能傳輸系統之分析 28 3-3 非接觸式感應充電系統架構之規劃 29 3-4 SAE-J1773感應充電規範之介紹 30 3-5 鐵芯結構選擇之考慮因素 33 3-5-1 感應充電槳相關專利 33 3-5-2 鐵芯結構與磁路分析 34 3-5-3 不同鐵芯結構磁場模擬與實測 36 3-5-4 多鐵芯數量組合與配置之磁場模擬 41 3-6 諧振電路 44 3-6-1 諧振電路之分析 44 3-6-2 初級側諧振電路之分析 45 3-6-3 次級側諧振電路之分析 47 3-6-4 初、次級側品質因數之分析 50 第四章 非接觸式油電混合車充電槳硬體電路設計 52 4-1 前言 52 4-2 系統電路架構 52 4-3 初級側電路 53 4-3-1 驅動電路 53 4-3-2 PLL控制電路 58 4-4 感應耦合結構設計 60 4-5 次級側電路 64 4-5-1 降壓型Reflex快充電路 65 4-5-2 PIC單晶片控制電路 68 4-5-3 感測電路 70 4-5-4 輔助電源電路與驅動電路 72 4-6 非接觸式充電系統設計流程 73 第五章 系統模擬與實驗量測 76 5-1 前言 76 5-2 硬體電路製作 76 5-3 IsSpice電路模擬 79 5-4 實驗結果量測 80 第六章 結論與未來研究方向 88 6-1 結論 88 6-2 未來研究方向 89 參考文獻 90

    [1] 2007年能源科技研究發展白皮書,經濟部能源局,2007年。
    [2] An Overview of Hybrid Vehicle Technology, Center for Transportation Research, 2004.
    [3]“SAE electric vehicle inductive coupling recommended practice,” SAE, Draft, 1995.
    [4] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC’97, 1997, vo1. 2, pp. 841-847.
    [5] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl. , vol 35, pp. 884-895, 1999.
    [6] Y. Koike, M. Kaneko, T. Hyogo, and H. Shojima, “Electromagnetic induction type charging device,” U.S. Patent 6,239,577, 2001.
    [7] Y. Koike, K. D. Conroy, and P. T. Nguyen, “Charger coupling,” U.S. Patent 6,373,221, 2002.
    [8] S. Ramos, G. R. Woody, R. G. Radys, and J. T. Hall, “Inductive charging system employing a fluid-cooled transformer coil and transmission cable,” U.S. Patent 6,396,241, 2002.
    [9] J. G. Hayes, “Battery charging systems for electric vehicles,” in Proc. IEE EV’98, 1998, pp. 4/1-4/8.
    [10] X. Liu and S. Y. Hui, “Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [11] S. Y. Hui and W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [12] X. Liu, P. W. Chan, and S. Y. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC’05, 2005, pp. 1927-1932.
    [13] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
    [14] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC’05, 2005, vol. 2, pp. 1133-1136.
    [15] E. S. Kim, H. K. Lee, Y. S. Kong, and Y. H. Kim, “Operating characteristics in LCLC resonant converter with a low coupling transformer,” in Proc. IEEE APEC’07, 2007, pp. 1651-1656.
    [16] G. A. Covic, O. H. Stielau, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. IEEE PowerCon., 2000, pp. 79-84.
    [17] K. W. Klontz, D. M. Divan, D. W. Novothy, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
    [18] B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC’94, 1994, pp. 418-423.
    [19] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE Techno-Ocean, 2004, pp. 2341-2345.
    [20] R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing ac and dc winding losses in ultra-compact, high-frequency, high-power transformers, ” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 475-477, 2001.
    [21] M. Terazoe, “Electric coupling apparatus for charging device,” U.S. Patent 6,320,352, 2001.
    [22] M. Kaneko, “Charging paddle which prevents damage of the surface of the primary core and method of manufacturing the same,” U.S. Patent 6,291,969, 2001.
    [23] C. S. Wang, O. H. StielauH, and G. A. Covic, “Design Considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, pp. 1308-1314, 2005.
    [24] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. BuchheitH , “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
    [25] G. R. Woody, and S. D. Downer, “Inductive coupler assembly having its primary winding formed in a printed board,” U.S. Patent 5,703,462, 1997.
    [26] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC’02, 2002, vol. 2, pp. 850-854.
    [27] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., U.S.A.: Addison-Wesley, 1989.
    [28] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless printed circuit board (PCB) transformers with multiple secondary Windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, 1999.
    [29] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, 2000.
    [30] T. Sato, K. Sato, K. Yamasawa, F. Zhang, and K. Yanagisawa, “Spiral-type transmission line with an Mn-Zn ferrite core,” IEEE Trans.Magn., vol. 39, no. 5, pp. 3205-3207, 2003.
    [31] K. Yamasawa, K. Maruyama, I. Hirohama, and P. P. Biringer, “High-frequency operation of a planar-type microtransformer and its application to multilayered switching regulators,” IEEE Trans. Magn., vol. 26, no. 3, pp. 1204-1209, 1990.
    [32] T. O. Howard and K. H. Carpenter, “A numerical study of the coupling coefficients for pot core transformers,” IEEE Trans. Magn., vol. 31, no. 3, pp. 2249-2253, 1995.
    [33] K. D. T. Ngo, R. P. Alley, A. J. Yerman, R. J. Charles, and M. H. Kuo, “Design issues for the transformer in a low-voltage power supply with high efficiency and high power density,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 592-600, 1992.
    [34] 粘孝先,軟磁錳鋅鐵氧鐵芯鐵損之分析,國立成功大學電機工程學系博士論文,2006。
    [35] R. Severns, E. Yeow, G. Woody, J. Hall and J. Hayes, “An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging,” in Proc. APEC’96, 1996, vo1. 1, pp. 32-38.
    [36] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
    [37] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
    [38] 孫清華,最新可充電電池技術大全,全華科技圖書股份有限公司,2003。
    [39] NP7-12 Data Sheet, Yuasa Battery Inc, 2002.
    [40] Y. H. Kim and H. D. Ha, “Design of interface circuits with electrical battery models,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 81-86, 1997.
    [41] Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. Energy Convers., vol. 7, no. 1, pp. 93-97, 1992.
    [42] C. C. Hua and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles,” in Proc. IEEE ISIE’00, 2000, vol. 1, pp. 135-140.
    [43] W. B. Burkett, P. Palisades, and R. V. Jackson, “Rapid Charging of Batteries,” U. S. Patent 3,517,293, 1970.
    [44] 鄭培璿,高頻快速充電電路策略之研究,國立台灣大學電機工程學系博士論文,2004。
    [45] Hans Bode, Lead-Acid Batteries. John Wiley & Sons, 1977.
    [46] 徐曼珍,閥控式密封鉛蓄電池及其在通訊中的使用,人民郵電出版社,1997。
    [47] 黃俊盛,電動車用鉛酸電池快速充電策略之研究,國立彰化師範大學電機工程學系碩士論文,2001。
    [48] Y. Podrazhansky and P. W. Popp, “Rapid Charging of Batteries,” U. S. Patent 4,829,225, 1989.
    [49] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” in Proc. IEE EPA’00, vol. 147, no. 1, 2000, pp. 37-43.
    [50] 陳婉珮、陳清標、陳柏燊、詹益瑋、楊明哲、陳慕平,“非接觸式供電系統研製”,台灣電力電子研討會,2006。
    [51] 毛賽君,非接觸感應電能傳輸系統關鍵技術研究,南京航空航天大學碩士論文,2006。
    [52] M. Ryu, Y. Park, J. Baek, and H. Cha, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON’05, 2005, pp. 1036-1042.
    [53] K. Watanabe, H. Kuki, S. Arisaka, and T. Shmiada, “Magnetic coupling device for charging an electric vehicle,” U.S. Patent 5,917,307, 1999.
    [54] K. Watanabe, H. Kuki, S. Arisaka, and T. Shmiada, “Magnetic coupling device for charging an electric vehicle,” U.S. Patent 5,907,231, 1999.
    [55] K. Watanabe, H. Kuki, D. Arisaka, and T. Shimada, “Charging connector for electric vehicle,” U.S. Patent 5,909,100, 1999.
    [56] G. R. Woody, H. J. Tanzer, and J. T. Hall, “Fixed core inductive charger,” U.S. Patent 5,434,493, 1995.
    [57] N. H. Kutkut, D. M. Divan, D. W. Novotny, and R. Marion, “Design considerations and topology selection for a 120kW IGBT converter for EV fast charging,” in Proc. IEEE PESC’95, 1995, vo1. 1, pp. 238-244.
    [58] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [59] K. Finkenzeller, RFID Handbook. John Wiley & Sons, 2003.
    [60] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. ICEMS’03, 2003, pp. 253-256.
    [61] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 1, pp. 85-90.
    [62] F. Zhou, M. H. Cui, T. Liu, T. Han, and Z. A. Wang, “Efficiency and frequency bifurcating phenomenon research of series resonance converter applied in a contact-less power transmission system,” in Proc. IEEE PESC’06, 2006, pp. 1-6.
    [63] M. Yamanaka, K. Ikuta, T. Matsui, H. Nakashima, and Y. Tomokuni, “A life indicator of stationary type sealed lead-acid battery,” in Proc. INTELEC’91, 1991, pp. 202-208.
    [64] P. H. Cheng and C. L. Chen, “High efficiency and nondissipative fast charging strategy,” IEEE Trans. Electric Power Appl., vol. 150, pp. 539-545, 2003.

    下載圖示 校內:2011-08-17公開
    校外:2011-08-17公開
    QR CODE