| 研究生: |
翁崇銘 Weng, Chung-Ming |
|---|---|
| 論文名稱: |
高功率無鉛壓電元件之開發:無鉛鈮酸鈉鉀基壓電陶瓷製備、元件設計及整合 Development of Lead-free Piezoelectric Devices with High Power: Preparations of Lead-free (NaxK1-x)NbO3-based Piezoelectric Ceramics、Component Design and Devices Integration |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 無鉛壓電陶瓷 、高機械品質因子 、壓電元件 |
| 外文關鍵詞: | Lead-free piezoelectric ceramics, High mechanical quality factor, Piezoelectric Device |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用固態反應法製備無鉛鈮酸鈉鉀基(NKN-based)壓電陶瓷,藉由適當的摻雜少量氟化銅(CF)和鈮酸鋰(LN)燒結促進劑,探討其對陶瓷的微觀結構ヽ氧空位ヽ電性能和穩定性之影響。用CF和LN燒結促進劑所合成之壓電陶瓷,比起純鉛鈮酸鈉鉀陶瓷具有更高的密度,並在不同的濕度環境下,還能保持相當穩定的電特性。此外,在本論文中已證明所添加之燒結促進劑(CF和LN)能夠有效的降低最佳燒結溫度。NKNCF陶瓷能在燒結溫度1000度時,表現出優越的“硬”壓電特性:kp = 35%,kt = 45%,k33 = 55%,d33 = 88 pC/N,Qm = 2800,以及 tanδ = 0.1%。相比之下, NKLN陶瓷在燒結溫度950度時,能獲得良好的“軟”壓電特性:kp = 50%,kt = 53%,k33 = 68%,d33 = 150 pC/N,Qm = 168,以及 tanδ = 4%。
其次,本論文使用新型燒結促進劑水合氟化铜(CH)製備無鉛鉛鈮酸鈉鉀基陶瓷,研究其在不同後退火處理溫度與氣氛下,對陶瓷材料的氧空位ヽ微觀結構和電性能之影響。 NKNCH陶瓷在氬氣下後退火處理800度時,可使其相對密度增加到97%。所得樣品呈現出以下優異的壓電性能:kp = 34.1%,kt = 45.3%,Qm = 3170,Rz = 8.6Ω,以及 tanδ = 0.1%。實驗結果清楚的表明,壓電陶瓷在適當的溫度與氬氣下後退火處理,將可以有效的再次產生氧空位,這對陶瓷材料的域結構之穩定性具有顯著的影響。 據我們所知,這是第一篇報導無鉛壓電陶瓷添加CF和CH燒結促進劑的論文。
最後,本論文將所開發出的壓電陶瓷,分別用於製造3MHz超音波治療傳感器ヽ表面聲波元件和線性超音波馬達,並探討其元件之性能。實驗結果清楚地表明,3MHz超音波治療傳感器在元件聲功率的探討中,其元件之RzヽQm和tanδ的值,比其機電耦合係數(k)更為重要的作用。 “硬”性NKNCF陶瓷相較於“軟”性NKLN陶瓷,其較容易產生更大的聲功率,這將促使它更適用於超音波治療傳感器之應用。表面聲波元件採用所提出之NKLN陶瓷製造,其呈現出良好的元件特性:波速為3210 m/s,機電轉換效率(k2)為6.7%,TCF約為−282 ppm/℃。即使在濕度變化很大的情況下,其元件也表現出良好的穩定性。壓電馬達採用所提出之NKNCH陶瓷製造,其馬達表現出高的水平速度為4.5 mm/s與垂直速度為3.02 mm/s。此外,當壓電馬達驅動時,其可表現出相當低的元件溫升,在驅動三分鐘時即可達到穩定。這結果表明,在未來高功率壓電元件製造中,無鉛NKNCH陶瓷將有機會可以替代PZT壓電陶瓷。
In this thesis, CuF2 (CF) and LiNbO3 (LN) modified lead-free (Na, K)NbO3 (NKN)-based ceramics (NKNCF and NKLN) were synthesized using solid-state reaction methods. The influence of doping materials on the microstructure, oxygen vacancies, electrical properties, and stability of the synthesized ceramics was then investigated. The ceramics synthesized with CF and LN dopants were of higher density than pure NKN ceramics and far more stable under different temperature and humidity. Moreover, the addition of sintering aids (CF and LN) had been proven particularly effective in reducing the optimal sintering temperature. NKNCF ceramics sintered at 1000℃ exhibited excellent “hard” piezoelectric properties (kp = 35%, kt = 45%, k33 = 55%, d33 = 88 pC/N, Qm = 2800, and tanδ = 0.1%). In contrast, NKLN ceramics sintered at 950℃ exhibited excellent “soft” piezoelectric properties (kp = 50%, kt = 53%, k33 = 68%, d33 = 150 pC/N, Qm = 168, and tanδ = 4%). The proposed ceramic materials are ideally suited to electromechanical devices for use in a wide variety of environments.
Secondly, Lead-free NKN ceramics were prepared using a novel sintering aid (CuF2.xH2O (x≈2)) to investigate the effects of post-annealing temperature and atmosphere on oxygen vacancies, microstructure, and electrical properties. Post-annealing NKN + 1.5mol% CuF2.xH2O (CH) ceramics at 800℃ under argon was shown to increase the bulk relative density to 97% through the formation of a homogeneous microstructure with liquid phase. The resulting samples presented the following excellent piezoelectric properties: kp:34.1%; kt:45.3%; Qm:3170; Rz:8.6Ω; and tanδ:0.1%. Our results clearly demonstrate that annealing under argon can produce oxygen vacancies in ceramics, which has a significant influence on the stability of domain structures of the samples. To the best of our knowledge, this is the first paper reporting on the addition of CF and CH dopants to lead-free piezoelectric ceramics.
Finally, the proposed ceramics were then used in the fabrication of 3-MHz ultrasonic therapeutic transducers, surface acoustic wave (SAW) devices, and rotary-linear ultrasonic motors, respectively. Moreover, the performances of piezoelectric devices for NKN-based ceramics were also investigated. Our results clearly demonstrate that the Rz, Qm and tanδ play a more important role in the generation of acoustic power of ultrasonic therapeutic transducers than the electromechanical coupling coefficient (k). The NKNCF ceramics were found to easily generate a greater acoustic power, which makes them suitable for applications in therapeutic transducers. SAW devices fabricated using the proposed NKLN ceramics presented high phase velocity of 3210 m/s, k2 of 6.7%, and TCF of approximately −282 ppm/℃. The resulting device demonstrated excellent stability, even under the effects of large variations in humidity. This material could be applied in electromechanical transducers as well as a wide range of SAW temperature sensors, thanks to the sensitivity provided by high k2 values and high phase velocity. Piezoelectric motors fabricated using the proposed NKNCH ceramics achieved a high level velocity of 4.5 mm/s, vertical velocity of 3.02 mm/s, and output power of 2.93 mW. The resulting device exhibited a moderate increase in operating temperature, reaching a stable plateau when the motor was driven for three min. These results demonstrate the potential of using lead-free NKNCH ceramics as an alternative to PZT-based ceramics in the further development of high-power piezoelectric devices.
[1] J. Moulson, J. M. Herbert, Electroceramics, second ed., John Wiley and Sons, New York, 2003.
[2] K. Uchino, Piezoelectric Actuator and Ultrasonic Motors, Kluwer Academic Publisher, Massachusetts, 1996.
[3] G. Sreenivasulu, U. Laletin, V. M. Petrov, V. V. Petrov, G. Srinivasan, A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors, Applied Physics Letters, vol. 100, no. 17, pp. 173506, 2012.
[4] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature, vol. 432, pp. 84-87, 2004.
[5] J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chemical Reviews, vol. 115, no. 7, pp. 2559-2595, 2015.
[6] X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics, Journal of the American Chemical Society, vol. 136, no. 7, pp. 2905-2910, 2014.
[7] Y. Guo, K. Kakimoto, H. Ohsato, Dielectric and piezoelectric properties of leadfree (Na0.5K0.5)NbO3-SrTiO3 ceramics, Solid State Communications, vol. 129, no. 5, pp. 279-284, 2004.
[8] S. Y. Chu, W. Water, Y. D. Juang, J. T. Liaw, Properties of (Na, K)NbO3 and (Li, Na, K)NbO3 ceramic mixed systems, Ferroelectrics, vol. 287, no. 1, pp. 23-33, 2003.
[9] G. H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics, Journal of the American Ceramic Society, vol. 50, no. 6, pp. 329-330, 1967.
[10] R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, M. Itoh, Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics, Japanese Journal of Applied Physics, vol. 41, no. 11B, pp. 7119-7122, 2002.
[11] S. Ishihara, K. Kakimoto, I. Kagomiya, Densification of (Na,K)NbO3 piezoelectric ceramics by two-step mixing process, Journal of Materials Science, vol. 46, no. 11, pp. 3822-3827, 2011.
[12] S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, B. H. Choi, Effect of CuO on the sintering temperature and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics, Materials Research Bulletin, vol. 43, no. 12, pp. 3580-3586, 2008.
[13] S. L. Yang, C. C. Tsai, Y. C. Liou, C. S. Hong, S. Y. Chu, Effects of non-stoichiometry on the microstructure, oxygen vacancies, and piezoelectric properties of CuTa2O6-doped NKN ceramic, Journal of the American Ceramic Society, vol. 96, no. 9, pp. 2906-2912, 2013.
[14] X. Tan, H. Fan, S. Ke, L. Zhou, Y.W. Mai, H. Huang, Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1-2x/5Cux)O3 lead-free ceramics with high Qm, Materials Research Bulletin, vol. 47, no. 12, pp. 4472-4477, 2012.
[15] S. L. Yang, C. C. Tsai, Y. C. Liou, C. S. Hong, B. J. Li, S. Y. Chu, Investigation of CuOdoped NKN ceramics with high mechanical quality factor synthesized by a Bsite oxide precursor method, Journal of the American Ceramic Society, vol. 95, no. 3, pp. 1011-1017, 2012.
[16] S. L. Yang, C. C. Tsai, Y. C. Liou, C. S. Hong, B. J. Li, S. Y. Chu, Effects of Improved process for CuO-doped NKN lead-free ceramics on high-power piezoelectric transformers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 12, pp. 2555-2561, 2011.
[17] H. Naghib-Zadeh, C. Glitzky, W. Oesterle, T. Rabe, Low temperature sintering of barium titanate based ceramics with high dielectric constant for LTCC applications, Journal of the European Ceramic Society, vol. 31, no. 4, pp. 589-596, 2011.
[18] W. G. Yang, B. P. Zhang, N. Ma, L. Zhao, High piezoelectric properties of BaTiO3- xLiF ceramics sintered at low temperatures, Journal of the European Ceramic Society, vol. 32, no. 4, pp. 899-904, 2012.
[19] M. J. Wang, H. Yang, Q. L. Zhang, D. Yu, L. Hu, Z. S. Lin, Z. S. Zhang, Low temperature sintering properties of LiF-doped BaTiO3-based dielectric ceramics for AC MLCCs, Journal of Materials Science: Materials in Electronics, vol. 26, no. 1, pp. 162-167, 2015.
[20] R. Marder, R. Chaim, G. Chevallier, C. Estournes, Effect of 1 wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering, Journal of the European Ceramic Society, vol. 31, no. 6, pp. 1057-1066, 2011.
[21] L. Benziada, J. Ravez, Ferroelectric BaTiO3 ceramics sintered at low temperature with the aid of a mixture of CaF2 and LiF, Journal of Fluorine Chemistry, vol. 73, no. 1, pp. 69-71, 1995.
[22] Y. Akishige, Y. Hiraki, S. Tsukada, J. Xu, S. Morito, T. Ohba, E.L. Walker, A. Neogi, Dielectric and piezoelectric properties of 10% KF-doped BaTiO3, Japanese Journal of Applied Physics, vol. 49, pp. 081501, 2010.
[23] J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3−0.06BaTiO3, Journal of the European Ceramic Society, vol. 37, no. 6, pp. 2365-2371, 2017.
[24] Q. Zhang, Z. Li, L. Li, Z. Xu, X. Yao, Temperature dependence of dielectric and piezoelectric properties of (1-x)(BiScO3–0.64PbTiO3)–xLiNbO3 high-temperature relaxor ferroelectric ceramics, Journal of Materials Science: Materials in Electronics, vol. 22, no. 9, pp. 1490-1494, 2011.
[25] Q. Zhang, Z. Li, M. Jiang, L. Wang, Structure and properties of LiNbO3 doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ceramics with the morphotropic phase boundary composition, Journal of Materials Science: Materials in Electronics, vol. 24, no. 1, pp. 295-298, 2013.
[26] Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Applied Physics Letters, vol. 85, no. 18, pp. 4121-4123, 2004.
[27] K. Wang, J.F. Li, Analysis of crystallographic evolution in (Na, K)NbO3-based lead-free piezoceramics by x-ray diffraction, Applied Physics Letters, vol. 91, no. 26, pp. 262902, 2007.
[28] W. Ge, Y. Ren, J. Zhang, C.P. Devreugd, J. Li, D. Viehland, A monoclinic-tetragonal ferroelectric phase transition in lead-free (K0.5Na0.5)NbO3-x%LiNbO3 solid solution, Journal of Applied Physics, vol. 111, no. 10, pp. 103503, 2012.
[29] K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, and J. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead‐free ceramics, Advanced Materials, vol. 28, no. 38, pp. 8519-8523, 2016.
[30] B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, and S. J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence, Journal of the American Chemical Society, vol. 138, no. 47, pp. 15459-15464, 2016.
[31] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J. F. Li, Y. Gu, J. Zhu, and S. J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy & Environmental Science, vol. 10, pp. 528-537, 2017.
[32] S. H. Wong, M. Kupnik, R. D. Watkins, K. Butts-Pauly, B. T. (Pierre) Khuri-Yakub, Capacitive Micromachined Ultrasonic Transducers for Therapeutic Ultrasound Applications, IEEE Transactions on Biomedical Engineering, vol. 57, no. 1, pp. 114-123, 2010.
[33] M. D. Gillett, M. T. Gettman, H. Zincke, M. L. Blute, Tissue ablation technologies for localized prostate cancer, Mayo Clinic Proceedings, vol. 79, no. 12, pp. 1547-1555, 2004.
[34] D. Miller, N. Smith, M. Bailey, G. Czarnota, K. Hynynen, I. Makin, Overview of therapeutic ultrasound applications and safety considerations, Journal of Ultrasound in Medicine, vol. 31, no. 4, pp. 623-634, 2012.
[35] I. Chilibon, Ultrasound transducer for medical therapy, Sensors and Actuators A: Physical, vol. 142, no. 1, pp. 124-129, 2008.
[36] W. Secomski, A. Nowicki, J. Wojcik, M. Lewandowski, M. Walczak, R. Tymkiewic, Annular array transducer and matched amplifier for therapeutic ultrasound, Archives of Acoustics, vol. 35, no. 4, pp. 653-660, 2010.
[37] G. T. Haar, Therapeutic ultrasound, European Journal of Ultrasound, vol. 9, no. 1, pp. 3-9, 1999.
[38] J. Shuto, I. Ichimiya, M. Suzuki, Effects of low-intensity focused ultrasound on the mouse submandibular gland, Ultrasound in Medicine & Biology, vol. 32, no. 4, pp. 587-594, 2006.
[39] M. D. Brentnall, R. W. Martin, S. Vaezy, P. Kaczkowski, F. Forster, L. Crum, A new high intensity focused ultrasound applicator for surgical applications, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 1, pp. 53-63, 2001.
[40] J. E. Zimmer, K. Hynynen, D. S. He, F. Marcus, The feasibility of using ultrasound for cardiac ablation, IEEE Transactions on Biomedical Engineering, vol. 42, no. 9, pp. 891-899, 1995.
[41] K. L. Gentry, S. W. Smith, Integrated catheter for 3-D intracardiac echocardiography and ultrasound ablation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 7, pp. 800-808, 2004.
[42] O. Vermesan, P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, River Publishers, Aalborg, Denmark, 2013.
[43] G. A. Borrero, J. P. Bravo, S. F. Mora, S. Velásquez, F. E. Segura-Quijano, Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models, Sensors and Actuators A: Physical, vol. 203, no. 1, pp. 204-214, 2013.
[44] K. Lee, W. Wang, T. Kim, S. Yang, A novel 440 MHz wireless SAW microsensor integrated with pressure–temperature sensors and id tags, Journal of Micromechanics and Microengineering, vol. 17, no. 3, pp. 515-523, 2007.
[45] Y. Tang, Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu, X. Zu, Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol–gel SiO2 films: investigations on the sensing property and mechanism, Sensors and Actuators B: Chemical, vol. 215, pp. 283-291, 2015.
[46] V. B. Raj, A. T. Nimal, M. Tomar, M. U. Sharma, V. Gupta, Novel scheme to improve SnO2/SAW sensor performance for NO2 gas by detuning the sensor oscillator frequency, Sensors and Actuators B: Chemical, vol. 220, pp. 154-161, 2015.
[47] W. Water, Y.S. Yan, Characteristics of strontium-doped ZnO films on love wave filter applications, Thin Solid Films, vol. 515, no. 17, pp. 6992-6996, 2007.
[48] C. S. Zhao, Ultrasonic motors: technologies and applications, Springer Science & Business Media, Beijing, 2007.
[49] B. Watson, J. Friend, L. Yeo, Piezoelectric ultrasonic micro/milli-scale actuators, Sensors and Actuators A: Physical, vol. 152, no. 2, pp. 219-233, 2009.
[50] F. S. Luecke, S. Jose, A. Tuganov, M. View, Piezoelectric actuator for optical alignment screws, U.S. Patent 5410206, 1995.
[51] D. A. Henderson, Ultrasonic lead screw motor, U.S. Patent 6940209, 2005.
[52] D. A. Henderson, Simple Ceramic Motor . . . Inspiring Smaller Products, 10th International Conference on New Actuators, 2006.
[53] W. G. Ali, G. Nagib, Embedded Control Design for Insulin Pump, Advanced Materials Research, vol. 201-203, pp. 2399-2404, 2011.
[54] D. Henderson, Novel piezo motor enables positive displacement microfluidic pump, NSTI Nanotech, vol. 3, pp. 272-275, 2007.
[55] F. Xia, X. Yao, Post-sintering annealing induced extrinsic dielectric and piezoelectric responses in lead-zinc-niobate-based ferroelectric ceramics, Journal of Applied Physics, vol. 92, no. 5, pp. 2709-2716, 2002.
[56] K. Prashanthi, M. Gupta, Y. Y. Tsui, T. Thundat, Effect of annealing atmosphere on microstructural and photoluminescence characteristics of multiferroic BiFeO3 thin films prepared by pulsed laser deposition technique, Applied Physics A: Materials Science & Processing, vol. 110, no. 4, pp. 903-907, 2013.
[57] K. Nishida, M. Osada, H. Takeuchi, I. Yosiaki, J. Sakai, N. Ito, R. Ikariyama, T. Kamo, T. Fujisawa, H. Funakubo, T. Katoda, T. Yamamoto, Raman spectroscopy study of oxygen vacancies in PbTiO3 thin films generated heat-treated in hydrogen atmosphere, Japanese Journal of Applied Physics, vol. 47, no. 9S, pp. 7510-7513, 2008.
[58] M. L. V. Mahesh, A. R. James, V. V. Bhanu Prasad, In-situ post deposition annealing of lead-free ferroelectric thin films in oxygen rich atmosphere, Journal of Materials Science: Materials in Electronics, vol. 26, no. 7, pp. 4930-4935, 2015.
[59] H. H. Su, C. S. Hong, C. C. Tsai, S. Y. Chu, Electric properties of SrTiO3 modified (Na0.48K0.48Li0.04)Nb0.89Ta0.05Sb0.06O3 lead-free ceramics, ECS Journal of Solid State Science and Technology, vol. 5, no. 10, pp. N67-N71, 2016.
[60] K. Chen, F. Zhang, D. Li, J. Tang, Y. Jiao, L. An, Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics, Ceramics International, vol. 42, no. 2, pp. 2899-2903, 2016.
[61] Y. Chang, Z. Yang, L. Wei, B. Liu, Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3 ceramics, Materials Science and Engineering: A, vol. 437, no. 2, pp. 301-305, 2006.
[62] Z. Pan, J. Chen, L. Fan, J. Zhang, S. Zhang, Y. Huang, L. Liu, L. Fang, X. Xing, Enhanced piezoelectric properties and thermal stability in the (K0.5Na0.5)NbO3 : ZnO lead-free piezoelectric composites, Journal of the American Ceramic Society, vol. 98, no. 12, pp. 3935-3941, 2015.
[63] W. G. Cady, Piezoelectricity, McGraw-Hill, New York, 1946.
[64] K. Uchino, Ferroelectric Devices, Marcel Dekker, Inc. New York, 2000.
[65] IEEE Standard on Piezoelectricity, New York, 1988.
[66] A. Erturk, D. J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons, New York, 2011.
[67] P. Dineva, D. Gross, R. Müller, T. Rangelov, Dynamic Fracture of Piezoelectric Materials, Springer, Switzerland, 2014.
[68] S. O. R. Moheimani, A. J. Fleming, Piezoelectric Transducers for Vibration Control and Damping, Springer, London, 2006.
[69] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic Press, New York, 1971.
[70] W. Känzig, Ferroelectrics and Antiferroeletrics, Solid State Physics, vol. 4, pp. 1-197, 1957.
[71] D. Dye, The piezo-electric quartz resonator and its equivalent electrical circuit, Proceedings of the Physical Society of London, vol. 38, pp. 399-458, 1925.
[72] S. Butterworth, On electrically-maintained vibrations, Proceedings of the Physical Society of London, vol. 27, pp. 410-424, 1914.
[73] K. S. V. Dyke, The Piezo-rlectric resonator and its equivalent network, Proceedings of the Institute of Radio Engineers, vol. 16, no. 6, pp. 742-764, 1928.
[74] V. Lingwal, B. Semwal, and N. Panwar, Dielectric properties of Na1-xKxNbO3 in orthorhombic phase, Bulletin of Materials Science, vol. 26, no. 6, pp. 619-625, 2003.
[75] G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3, Physical Review, vol. 96, no. 3, pp. 581-588, 1954.
[76] C. C. Tsai, Development of low-temperature-sintering synthesis technique of piezoceramics with high mechanical quality factor, design and fabrication of high-power therapeutic transducers, Ph. D. Dissertation, Department of Electronic Engineering, Southern Taiwan University, Tainan, Taiwan, R.O.C, 2011.
[77] R. M. German, Liquid phase sintering, Plenum Press, New York, 1985.
[78] W. D. Kingery, Densification during sintering in the presence of a liquid phase. I. theory, Journal of Applied Physics, vol. 30, pp. 301-306, 1959.
[79] D. L. Corker, R. W. Whatmore, E. Ringgaard, and W. W. Wolny, Liquid-phase sintering of PZT ceramics, Journal of the European Ceramic Society, vol. 20, no. 12, pp. 2039-2045, 2000.
[80] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, and N. M. Alford, A mechanism of low temperature sintering, Journal of the European Ceramic Society, vol. 26, no. 13, pp. 2777-2783, 2006.
[81] G. H. Haertling, Ferroelectric ceramics: history and technology, Journal of the American Ceramic Society, vol. 82, no.4, pp. 797-818, 1999.
[82] S. Takahashi, M. Takahashi, Effects of impurities on the mechanical quality factor of lead zirconate titanate ceramics, Japanese Journal of Applied Physics, vol. 11, no.1, pp. 31-35, 1972.
[83] S. Takahashi, Internal bias field effects in lead zirconate-titanate ceramics doped with multiple impurities, Japanese Journal of Applied Physics, vol. 20, no.1, pp. 95-101, 1981.
[84] G. H. Jonker, Nature of aging in ferroelectric ceramics, Journal of the American Ceramic Society, vol. 55, no.1, pp. 57-58, 1972.
[85] K. Carl, K. H. Hardtl, Electrical after-effects in Pb (Ti, Zr)O3 ceramics, Ferroelectrics, vol. 17, no.1, pp. 473-486, 1978.
[86] S. Takahashi, Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities, Japanese Journal of Applied Physics, vol. 9, no.10, pp. 1236-1246, 1970.
[87] S. Takahashi, Electrical resistivity of lead zirconate titanate ceramics containing impurities, Japanese Journal of Applied Physics, vol. 10, no.5, pp. 643-651, 1971.
[88] K. C. Kao, Dielectric Phenomena in Solids, Elsievier Academic Press, San Diego, California, 2004.
[89] S. L. Yang, Development of lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics with high mechanical quality factor and their applications on piezoelectric transformers, Ph. D. Dissertation, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2013.
[90] H. Allik, J. R. Hughes, Finite Element for Piezoelectric Vibration, International Journal Numerical Methods of Engineering, no.2, pp. 151-157, 1970.
[91] ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
[92] D. A. Berlincourt, D. R. Curran, H. Jaffe, Piezoelectric and piezomagnetic materials and their function in transducers, Academatic, New York, 1964.
[93] G. S. kino, Acoustic Waves: Devices Imaging, and Analog Signal Processing, Prentice-Hall Inc., New Jersey, 1987.
[94] E. Moreno, G. González, L. Leija, O. Rodríguez, M. Castillo, M. Fuentes, Performance analysis of ultrasono-therapeutic transducer with contact detection, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no.6, pp. 743-747, 2003.
[95] C. S. Desilets, J. D. Fraser, G. S. Kino, The design of efficient broad-band piezoelectric transducers, IEEE Transactions on Sonics and Ultrasonics, vol. 25, no.3, pp. 115-125, 1978.
[96] Y. C. Chen, S. Wu, Multiple acoustic matching layer design of ultrasonic transducer for medical application, Japanese Journal of Applied Physics, vol. 41, no.10, pp. 6098-6107, 2002.
[97] R. A. Gdula, High-field losses of adulterated lead zirconate-titanate piezoelectric ceramics, Journal of the American Ceramic Society, vol. 51, no.12, pp. 683-687, 1968.
[98] N. Lamberti, G. Caliano, A. Iula, M. Pappalardo, A new approach for the design of ultrasono-therapeutic transducer, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.440, no.1, pp. 77-84,1997.
[99] A. Turó, J. Salazar, J. A. Chávez, J. A. Ortega, M. J. García, Performance improvement of ultrasonic therapeutic equipment by modifying the classical transducer design, IEE Proceedings - Science, Measurement and Technology, vol.146, no.2, pp. 107-112,1999.
[100] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications, Academic Press, San Diego, 1998.
[101] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics, Journal of the American Ceramic Society, vol. 88, no.5, pp. 1190-1196, 2005.
[102] C. B. Sawyer and C. Tower, Rochelle salt as a dielectric, Physical Review, vol. 35, pp. 269, 1930.
[103] S. Y. Chu, T. Y. Chen, Fabrication of modified lead titanate piezoceramics with zero temperature coefficient and its application on SAW devices, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no.6, pp. 663-667, 2004.
[104] E. Boucher, D. Guyomar, L. Lebrun, B. Guiffard, G. Grange, Effect of (Mn, F) and (Mg, F) co-doping on dielectric and piezoelectric properties of lead zirconate titanate ceramics, Journal of Applied Physics, vol. 92, no.9, pp. 5437-5442, 2002.
[105] C. M. Weng, C. C. Tsai, J. Sheen, C. S. Hong, S. Y. Chu, Z. Y. Chen, H. H. Su, Low-temperature-sintered CuF2-doped NKN ceramics with excellent piezoelectric and dielectric properties, Journal of Alloys and Compounds, vol. 698, pp. 1028-1037, 2017.
[106] S. L. Yang, C. S. Hong, C. C. Tsai, Y. C. Liou, S. Y. Chu, Effects of modified-process on the microstructure, internal bias field, and activation energy in CuO-doped NKN ceramics, Journal of the European Ceramic Society, vol. 32, no. 8, pp. 1643-1650, 2012.
[107] S. L. Yang, C. C. Tsai, Y. C. Liou, C. S. Hong, H. C. Chen, S. Y. Chu, Differences between copper-oxide- and zinc-pxide-doped sodium potassium niobate ceramics, Journal of the American Ceramic Society, vol. 95, no. 7, pp. 2110-2112, 2012.
[108] J. Acker, H. Kungl, M. J. Hoffmann, Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5)NbO3, Journal of the American Ceramic Society, vol. 93, no. 7, pp. 1270-1281, 2010.
[109] D. L. Perry, Handbook of Inorganic Compounds, second ed., CRC Press, 2011.
[110] S. L. Yang, C. C. Tsai, C. S. Hong, S. Y. Chu, Effects of sintering aid CuTa2O6 on piezoelectric and dielectric properties of sodium potassium niobate ceramics, Materials Research Bulletin, vol. 47, no. 4, pp. 998-1003, 2012.
[111] Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C. Tian, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/ 3)0.20(Zr0.5Ti0.5)0.80O3 ceramics, Journal of the American Ceramic Society, vol. 87, no. 5, pp. 847-850, 2004.
[112] T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3, Japanese Journal of Applied Physics, vol. 31, no. 9B, pp. 3058-3060, 1992.
[113] S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim, K. W. Lee, Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics, Journal of Electroceramics, vol. 18, no. 3-4, pp. 311-315, 2007.
[114] B. Guiffard, D. Audigier, L. Lebrun, M. Troccaz, E. Pleska, Effects of fluorineoxygen substitution on the dielectric and electromechanical properties of lead zirconate titanate ceramics, Journal of Applied Physics, vol. 86, no. 10, pp. 5747-5752, 1999.
[115] H. Q. Wang, Y. J. Dai, X. W. Zhang, Microstructure and hardening mechanism of K0.5Na0.5NbO3 lead-free ceramics with CuO doping sintered in different atmospheres, Journal of the American Ceramic Society, vol. 95, no. 4, pp. 1182-1184, 2012.
[116] L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M.P. Thi, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics, Materials Chemistry and Physics, vol. 117, no. 1, pp. 138-141, 2009.
[117] M. S. Islam, Ionic transport in ABO3 perovskite oxides: a computer modelling tour, Journal of Materials Chemistry, vol. 10, no. 5, pp. 1027-1038, 2000.
[118] L. Zhou, P. M. Vilarinho, P. Q. Mantas, J. L. Baptista, E. Fortunato, The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics, Journal of the European Ceramic Society, vol. 20, no. 8, pp. 1035-1041, 2000.
[119] D. Szwagierczak, J. Kulawik, Influence of MnO2 and Co3O4 dopants on dielectric properties of Pb(Fe2/3W1/3)O3 ceramics, Journal of the European Ceramic Society, vol. 25, no. 9, pp. 1657-1662, 2005.
[120] C. S. Hong, S. Y. Chu, W. C. Su, Effect of synthesis method on the long-range order of the space charge type in 0.75PFW-0.25PT ceramics, Journal of Alloys and Compounds, vol. 497, no. 1-2, pp. 436-441, 2010.
[121] L. L. Hench, J. K. West, Principles of Electronic Ceramics, JOHN WILEY & SONS, New York, 1990.
[122] C. Long, H. Fan, M. Li, A ferroelectric polarization contribution from defect dipoles in acceptor Aurivillius oxide, (Na,Bi)0.47(Li,Ce)0.03Bi2Ta1.97Sc0.03O8.97, Applied Physics Letters, vol. 103, no. 19, pp. 192908, 2013.
[123] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid, Japanese Journal of Applied Physics, vol. 43, no. 10, pp. 7159-7163, 2004.
[124] D. Lin, K. W. Kwok, H. W. L. Chan, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric, Applied Physics Letters, vol. 90, no. 23, pp. 232903, 2007.
[125] L. Taïbi-Benziada, H. S. Hilal, R. V. D. Mühll, Low temperature sintering and dielectric properties of (Ba, Ca)(Ti, Li)(O, F)3 ceramics with high permittivity, Solid State Sciences, vol. 8, no. 8, pp. 922-926, 2006.
[126] N. M. Hagh, K. Kerman, B. Jadidian, A. Safari, Dielectric and piezoelectric properties of Cu2+-doped alkali niobates, Journal of the European Ceramic Society, vol. 29, no. 11, pp. 2325-2332, 2009.
[127] Y. Zhao, Y. Zhao, R. Huang, R. Liu, H. Zhou, Microstructure and piezoelectric properties of CuO-doped 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 lead-free ceramics, Journal of the European Ceramic Society, vol. 31, no. 11, pp. 1939-1944, 2011.
[128] D. Lin, K. W. Kwok, H. L. W. Chan, Piezoelectric and ferroelectric properties of KxNa1-xNbO3 lead-free ceramics with MnO2 and CuO doping, Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 273-278, 2008.
[129] M. Jiang, X. Li, J. Liu, J. Zhu, X. Zhu, L. Li, Q. Chen, J. Zhu, D. Xiao, Structural and electrical properties of Cu-doped (K0.5Na0.5)NbO3-MgTiO3 lead-free ceramics, Journal of Alloys and Compounds, vol. 479, no. 1-2, pp. L18-L21, 2009.
[130] C. W. Ahn, S. Y. Noh, S. Nahm, J. Ryu, K. Uchino, S. J. Yoon, J. S. Song, Low-temperature sintering and piezoelectric properties of ZnO-added 0.41Pb(Ni1/3Nb2/3)O3-0.36PbTiO3-0.23PbZrO3 ceramics, Japanese Journal of Applied Physics, vol. 42, no. 9A, pp. 5676-5680, 2003.
[131] D. Lin, K. W. Kwok, H. W. L. Chan, Double hysteresis loop and aging effect in K0.5Na0.5NbO3-K5.4Cu1.3Ta10O9 lead-free ceramics, Journal of the American Ceramic Society, vol. 92, no. 6, pp. 1362-1365, 2009.
[132] D. Lin, K. W. Kwok, H. L. W. Chan, Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics, Journal of Applied Physics, vol. 103, no. 6, pp. 064105, 2008.
[133] W. Liu, W. Chen, L. Yang, L. Zhang, Y. Wang, C. Zhou, S. Li, X. Ren, Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain, Applied Physics Letters, vol. 89, no. 17, pp. 172908, 2006.
[134] Z. Feng, S. W. Or, Aging-induced, defect-mediated double ferroelectric hysteresis loops and large recoverable electrostrains in Mn-doped orthorhombic KNbO3-based ceramics, Journal of Alloys and Compounds, vol. 480, no. 2, pp. L29-L32, 2009.
[135] S. M. Ke, H. T. Huang, H. Q. Fan, H. K. Lee, L. M. Zhou, Y. W. Mai, Antiferroelectriclike properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics, Applied Physics Letters, vol. 101, no. 8, pp. 082901, 2012.
[136] X. Sun, J. Deng, J. Chen, C. Sun, X. Xing, Effects of Li substitution on the structure and ferroelectricity of (Na,K)NbO3, Journal of the American Ceramic Society, vol. 92, no. 12, pp. 3033-3036, 2009.
[137] H. Du, Y. Huang, H. Tang, W. Feng, H. Qin, X. Lu, Structure and electrical properties of [(K0.49Na0.51)1-xLix](Nb0.90Ta0.04Sb0.06)O3 lead-free piezoceramics, Ceramics International, vol. 39, no. 5, pp. 5689-5694, 2013.
[138] Y. H. Zhen, J. F. Li, Abnormal grain growth and new core-shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics, Journal of the American Ceramic Society, vol. 90, no. 11, pp. 3496-3502, 2007.
[139] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirana, Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics, Japanese Journal of Applied Physics, vol. 44, no. 8, pp. 6136-6142, 2005.
[140] W. Feng, Y. Huang, C. Yang, J. Lu, Y. Huang, Q. Hu, H. Qin, Effects of the addition of Li0.8Ni0.2Nb0.96O3 on the structure and electrical properties of K0.48Na0.52NbO3 lead-free piezoceramics, Materials Science and Engineering: B, vol. 189, pp. 7-12, 2014.
[141] J. H. Cho, N. R. Yeom, S. J. Kwon, Y. J. Lee, Y. H. Jeong, M. P. Chun, Ferroelectric domain morphology and structure in Li-doped (K,Na)NbO3 ceramics, Journal of Applied Physics, vol. 112, no. 5, pp. 052005, 2012.
[142] X. Chen, X. Ruan, K. Zhao, X. He, J. Zeng, Y. Li, L. Zheng, C.H. Park, G. Li, Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics, Journal of Alloys and Compounds, vol. 632, pp. 103-109, 2015.
[143] S. H. Kim, H. W. You, S. M. Koo, J. G. Ha, S. M. Nam, J. H. Koh, S. J. Jeong, Comparative analysis of Li2CO3 doped (Ba,Sr)TiO3 and ZnBO doped (Ba,Sr)TiO3 ceramics for the low temperature sintering applications, Ferroelectrics, vol. 382, no. 1, pp. 76-84, 2009.
[144] K. Chung, J. Yoo, C. Lee, D. Lee, Y. Jeong, H. Lee, Microstructural, dielectric and piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3–Pb(Mn1/2Nb2/3)O3–Pb(Zr,Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3, Sensors and Actuators A: Physical, vol. 125, no. 2, pp. 340-345, 2006.
[145] A. Reisman, F. Holtzberg, Phase equilibria in the system K2CO3-Nb2O5 by the method of differential thermal analysis, Journal of the American Chemical Society, vol. 77, no. 8, pp. 2115-2119, 1955.
[146] A. B. Haugen, F. Madaro, L. P. Bjørkeng, T. Grande, M. A. Einarsrud, Sintering of sub-micron K0.5Na0.5NbO3 powders fabricated by spray pyrolysis, Journal of the European Ceramic Society, vol. 35, no. 5, pp. 1449-1457, 2015.
[147] Y. Zhen, J. F. Li, Normal sintering of (K, Na)NbO3-Based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties, Journal of the American Ceramic Society, vol. 89, no. 12, pp. 3669-3675, 2006.
[148] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, The Journal of Physical Chemistry B, vol. 107, no. 50, pp. 13871-13879, 2003.
[149] L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships, The Journal of Physical Chemistry B, vol. 110, no. 36, pp. 17860-17865, 2006.
[150] Y. Liu, T. Maeda, Y. Yokouchi, T. Morita, The hardening of CuOe(K,Na)NbO3 via post annealing with argon, Japanese Journal of Applied Physics, vol. 53, no. 1, pp. 015503, 2014.
[151] M. R. Yang, C. S. Hong, C. C. Tsai, S. Y. Chu, Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na0.5K0.5) NbO3-0.05LiTaO3 ceramics, Japanese Journal of Applied Physics, vol. 488, no. 1, pp. 169-173, 2009.
[152] H. Y. Park, C. W. Ahn, K. H. Cho, S. Nahm, Low-temperature sintering and piezoelectric properties of CuO-added 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics, Journal of the American Ceramic Society, vol. 12, no. 12, pp. 4066-4069, 2007.
[153] H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, Journal of the American Ceramic Society, vol. 91, no. 7, pp. 2374-2377, 2008.
[154] X. Li, M. Jiang, J. Liu, J. Zhu, X. Zhu, L. Li, Y. Zhou, J. Zhu, D. Xiao, Phase transitions and electrical properties of (1-x)(K0.5Na0.5)NbO3-xBiScO3 lead-free piezoelectric ceramics with a CuO sintering aid, Physica Status Solidi (a), vol. 206, no. 11, pp. 2622-2626, 2009.
[155] Y. Guo, H. Fan, C. Long, J. Shi, L. Yang, S. Lei, Electromechanical and electrical properties of Bi0.5Na0.5Ti1-xMnxO3- ceramics with high remnant polarization, Journal of Alloys and Compounds, vol. 610, no. 15, pp. 189-195, 2014.
[156] C. C. Tsai, S. Y. Chu, J. S. Jiang, C. S. Hong, Y. F. Chiu, The phase structure, electrical properties, and correlated characterizations of (Mn, Sb) co-tuned PZMnNS–PZT ceramics with relaxation behavior near the morphotropic phase boundary, Ceramics International, vol. 240, no. 8, pp. 11713-11725, 2014.
[157] H. Goudarzi, S. Baghshahi, PZT ceramics prepared through a combined method of B-site precursor and wet mechanically activated calcinate in a planetary ball mill, Ceramics International, vol. 43, no. 4, pp. 3873-3878, 2017.
[158] R. Tipakontitikul, Y. Suwan, A. Niyompan, Effects of MnO2 addition on the dielectric behaviors of the PZT-PMN ceramics, Ferroelectrics, vol. 381, no. 1, pp. 144-151, 2009.
[159] Y. Dong, J. Chen, J. Cheng, Enhanced dielectric and piezoelectric properties of Mn modified 0.65(Bi0.95La0.05)FeO3-0.35Pb(Ti1-xMnx)O3 ceramics, Journal of Materials Science: Materials in Electronics, vol. 27, no. 7, pp. 6823-6828, 2016.
[160] C. C. Tsai, S. Y. Chu, C. K. Liang, Low-temperature sintered PMnN-PZT based ceramics using the B-site oxide precursor method for therapeutic transducers, Journal of alloys and compounds, vol. 478, no. 1-2, pp. 516-522, 2009.
[161] T. Kamiya, R. Mishima, T. Tsurumi, M. Daimon, T. Nishimura, Mechanism of temperature dependence of piezoelectric properties for Pb(Zr, Ti)O3, Japanese Journal of Applied Physics, vol. 32, no. 9B, pp. 4223, 1993.
[162] C. C. Tsai, S. F. Chen, S. Y. Chu, C. M. Cheng, M. C. Kuan, The characteristics of ultrasonic therapeutic transducers and used lead-free non-stoichiometric NKN-based piezoelectric ceramics, Japanese Journal of Applied Physics, vol. 11, no. 3, pp. S128-S133, 2011.
[163] C. C. Tseng, Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4, Journal of Applied Physics, vol. 38, no. 11, pp. 4281-4284, 1967.
[164] M. Kodama, H. Egami, S. Yoshida, Fabrication of temperature stabilized piezoelectric ceramic for surface acoustic wave application, Japanese Journal of Applied Physics, vol. 14, no. 11, pp. 1847-1848, 1975.
[165] S. Y. Chu, T. Y. Chen, The influence of Cd doping on the surface acoustic wave properties of Sm-modified PbTiO3 ceramics, Journal of the European Ceramic Society, vol. 24, no. 7, pp. 1993-1998, 2004.
[166] S. Y. Chu, T. Y. Chen, I. T. Tsai, W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device, Sensors and Actuators A: Physical, vol. 113, no. 2, pp. 198-203, 2004.
[167] Y. Sun, Z. Lia, Q. Li, An indirect method to measure the variation of elastic constant c33 of piezoelectric ceramics shunted to circuit under thickness mode, Sensors and Actuators A: Physical, vol. 218, no. 1, pp. 105-115, 2014.
[168] Z. Long , H. Shen, J. Zhang, S. Zhao, Y. Lin, Z. Li, Dynamics model and vibration control of piezoelectric feeder in semiconductor manufacturing assembly, IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 1, pp. 97-107, 2018.
[169] A. Nasedkin, A. Nasedkina, A. Rybyanets, Finite element simulation of effective properties of microporous piezoceramic material with metallized pore surfaces, Ferroelectrics, vol. 508, no. 1, pp. 100-107, 2018.
[170] J. Wang , L. Qin, W. Song, Z. Shi, G. Song, Electromechanical characteristics of radially layered piezoceramic/epoxy cylindrical composite transducers: theoretical solution, numerical simulation, and experimental verification, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 9, pp. 1643-1656, 2018.
[171] K. Ogo, K. Kakimoto, M. Weiß, S. J. Rupitsch, R. Lerch, Determination of temperature dependency of material parameters for lead-free alkali niobate piezoceramics by the inverse method, AIP Advances, vol. 6, no. 6, pp. 065101, 2016.
[172] R. C. Chang, S. Y. Chu, Y. F. Lin, C. S. Hong, Y. P. Wong, An investigation of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics and surface acoustic wave devices, Journal of the European Ceramic Society, vol. 27, no. 16, pp. 4453-4460, 2007.
[173] R. C. Chang, S. Y. Chu, Y. P. Wong, Y. F. Lin, C. S. Hong, Properties of (Na0.5K0.5)NbO3-SrTiO3 based lead-free ceramics, Sensors and Actuators A: Physical, vol. 136, no. 1, pp. 267-272, 2007.
校內:2023-10-10公開