簡易檢索 / 詳目顯示

研究生: 魏凌飛
Wei, Ling-Fei
論文名稱: 運用於3D影像系統中深度圖之動態補償IIR濾波器演算法及硬體設計
Algorithm and Architecture Design of Motion Compensated Infinite Impulse Response Filters for Depth Maps in 3D Video System
指導教授: 李國君
Lee, Gwo Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 75
中文關鍵詞: 3D影像系統深度圖動態補償
外文關鍵詞: 3D video system, depth maps, motion compensated
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個可運用於3D影像系統中深度圖之動態補償IIR濾波器,此濾波器被運用在深度圖的後處理。在不合理的深度圖被用來參考並渲染成立體影像對時,有可能會造成人眼視覺對立體影像對的對焦困難與畫面抖動,利用我們提出來的濾波器對深度圖作濾波,可以將此一現象之程度降低,增加人眼對所渲染的立體影像對焦與觀賞的舒適度。所提出的演算法並包含運動量值的計算,因此本演算法可以根據不同的程度運動量值大小去適應地調節濾波器係數以適用於不同場景,結果顯示經過我們提出的濾波器所後處理過的深度圖,在渲染成立體像對後的視訊品質有變好的效果。
    本論文並針對所提出的演算法作硬體架構的設計分析,透過設計空間的展開,按照從高層級往下設計之流程,在不同的層級中萃取出硬體架構的資訊並由上層級往下探索,以一套有系統之設計流程探索出符合規格的最佳解並為硬體架構之設計。

    The thesis proposed a motion compensated infinite impulse response filters algorithm for depth maps in 3D video system. The filter is used for post-processing of depth maps. If inappropriate depth maps are used to render stereo image pairs, the view of rendered image would flicker and become difficult to be converged by human’s eyes. Our proposed filter can be adopted to filter depth maps so as to relief the uncomfortable visual effect when human’s eye is focusing on the rendered image pair. Our proposed algorithm contains calculation of motion magnitude, and the coefficient of our filter is adaptive to motion magnitude to be applicable in different scene. The result shows that the visual quality of rendered image pair is improved after the used depth maps are post-processed by our proposed algorithm.
    The thesis also proposed architecture design of our algorithm. Following the top-down design flow methodology, we expand the design space, extract architectural information and explore from top to lower levels of abstraction. By the systemic approach, the optimal solution which meets the specification we explored in design space will mapped to our architecture design.

    Abstract ii Table of Contents iv List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Organization of this Thesis 2 Chapter 2 Literature Review 4 2.1 Digital Filter 4 2.1.1 FIR Filter 4 2.1.2 IIR Filter 5 2.1.3 Comparison Between FIR and IIR 6 2.2 Motion Compensated Temporal filter 7 2.2.1 Spatial Temporal Sampling of Video Sequences 8 2.2.2 Motion and Its Spatial Temporal Representation 9 2.2.3 Motion Compensated Temporal Filtering 11 2.2.4 Motion Estimation Algorithm used: Three-dimensional (3-D) Recursive ME Algorithm 14 Chapter 3 Proposed Post-processing Filters for Depth Maps 17 3.1 Motivation 17 3.2 Post-processing example: Depth Maps Generated by Original 2D to 3D Algorithm 18 3.3 The Concept of Proposed Algorithm 20 3.4 Proposed Post-processing Filters 22 3.5 Coefficient Evaluation 23 3.6 Mapping Function for Motion Magnitude to Coefficient of IIR Filters 26 Chapter 4 Proposed Architecture Design 32 4.1 Design Specification 32 4.2 Introduction to Architecture Design 33 4.2.1 Introduction to Top-down Architecture Design flow 33 4.2.2 Introduction to Complexity Analysis 36 4.2.3 Introduction to Design Space Exploration 39 4.3 Proposed Architecture 41 4.3.1 Block Diagram of Proposed Architecture 41 4.3.2 Number of Operations 43 4.3.3 Degree of Parallelism 46 4.3.4 Pipeline Depth 48 4.3.5 Clock Rate 48 4.3.6 Memory Requirements 56 4.3.7 Data Transfer and Bandwidth 57 4.3.7.1 Bandwidth 57 4.3.7.2 Bus Bit Width 58 4.4 Exploration Result 60 4.5 Processing Element Design 61 Chapter 5 Experimental Results and Verification 63 5.1 Experimental Results 63 5.1.1 Temporal Improvement 63 5.1.2 Spatial Improvement 68 5.2 Verification 71 5.2.1 Verification in High Level Modeling 71 Chapter 6 Conclusions and Future Work 73 References 74

    [1] ISO/IEC JTC1/SC29/WG11 “Description of Exploration Experiments in 3D Video Coding”, N10173, October 2008.
    [2] C. Fehn, K. Hopf and Q. Quante “Key Technologies for an Advanced 3D-TV System”, Proceedings of SPIE Three-Dimensional TV, Video and Display III, pages 66-80, Philadephia, PA, USA, October 2004.
    [3] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing , California Technical Publishing, 1997.
    [4] E. Dubois and S. Sabri, “Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering”, IEEE Trans. on Communications, Vol. 32, Issue 7, July 1984.
    [5] R. P. Kleihorst, R. L. Lagendijk and J. Biemond, “Noise reduction of image sequences using motion compensation and signal decomposition”, IEEE Trans. on Image Processing, Vol. 4, Issue 3, March 1995.
    [6] M. K. Ozkan, M. I. Sezan, and A. M. Tekalp, “Adaptive motion-compensated filtering of noisy image sequences”, IEEE Trans. on circuits and systems for video technology, Vol.3, Aug.1993
    [7] H. Schwarz , D. Marpe and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard”, IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 1103 2007.
    [8] E.B. Bellers, ”De-interlacing A contribution to the interlaced versus progressive video debate”, Philips Electronics N.V. 1999 ISBN 90-74445-47-0 p19~26
    [9] J. R. Jain and A. K. Jain, “Displacement measurement and its application in interframe image coding,” IEEE Trans. Commun., vol. COM-29, pp. 1799–1808, Dec. 1981.
    [10] T. Koga, K. Iinuma, A. Hirano, Y. Iilima, and T. Ishiguro, “Motion-compensated interframe coding for video conferencing,” in Proc. NTC 81, New Orleans, LA, paper G5.3.1.–G5.3.5., Nov. 1981.
    [11] H. G. Musmann, P. Pirsch, and H. J. Grallert, “Advances in picture coding,” Proc. IEEE, vol. 73, pp. 523–548, Apr. 1985.
    [12] G. G. Lee, M.-J. Wang, H.-Y. Lin, D. W.-C. Su, and B.-Y. Lin, "Algorithm/architecture co-design of 3-D spatio-temporal motion estimation for video coding," IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 455-465, 2007.
    [13] A.M. Bock, “Motion-adaptive standards conversion between formats of similar field rates,” Signal Processing: Image Communication, vol. 6, no. 3, pp. 275-280, June 1994.
    [14] Gwo Giun Lee, Yen-Kuang Chen, Marco Mattavelli, and Euee S. Jang, “Algorithm/Architecture Co-Exploration of Visual Computing: Overview and Future Perspectives,” IEEE Trans. on Circuits and Systems for Video Technology. Vol. 19, Iss.11, pp. 1576-1587, Nov. 2009.
    [15] K. K. Parhi, VLSI Digital Signal Processing Systems Design and implementation, John Wiley & Sons, New York, USA, 1999.

    無法下載圖示 校內:2021-02-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE