| 研究生: |
余義傑 Yee, Gee Keat |
|---|---|
| 論文名稱: |
熱處理對核殼結構銅銀複合材料之微結構與電性之影響 Influences of Heat Treatment on Microstructures and Electrical Properties of Core-Shell Copper-Silver Composite Material |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 低溫燒結 、高溫燒結 、核殼結構 、銀銅複合材料 |
| 外文關鍵詞: | High temperature sintering, low temperature sintering, core-shell structure, silver-copper composite material |
| 相關次數: | 點閱:124 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在導電漿料製作技術中,導電金屬粉末是關鍵。對於導電漿料而言,導電粉末大多以金、銀等貴重金屬粉末為主,還有其它價格相對低的銅、鎳或鋁金屬粉末…等為輔,其中以銀導電漿料之應用最為廣泛。近幾年來由於貴重金屬價格的飆升,使得導電漿料成本增加,因此以低成本之導電金屬粉末代替貴金屬製作電子漿料已成為未來發展的趨勢。本論文針對目前其中一種正於開發中的低成本導電金屬粉末,核殼結構銀銅複合材料去做分析,了解熱處理對其燒結特性與電性之關係。
本論文所分析之核殼結構銀銅複合材料的粉末是利用伽凡尼置換反應所製備,藉由表面生成之奈米銀做為金屬銅粉接觸的黏著劑,以降低金屬銅粉接觸電阻。將所製好的粉末製備成漿料並比較其不同溫度及氣氛下之燒結狀態,籍由燒結後漿料之微結構去了解其燒結特性及機構,得到粉末之最佳燒結溫度及最低之電阻率。本實驗分爲兩大方向,其一為在溫度250℃至550℃之低溫區間,以50℃作爲溫度間隔去探討兩种不同粒徑銅粉所製備之核殼結構銀銅複合材料的粉末燒結後之微結構變化、附著效果、熱特性以及其物性與電性。其二則是利用快速退火高溫爐,在溫度600℃至800℃之高溫區間,以100℃作爲溫度間隔,再以不同之氣氛燒結去探討燒結後之微結構變化、附著效果、熱特性以及其物性與電性。
透過實驗與分析,取得包覆於銅表面之奈米銀在150℃(2.5µm) 及118°C (1.5µm) 左右開始熔化並開始互相連接,形成支撐著銅顆粒之框架。低溫燒結部分奈米銀於350℃(2.5µm) 及250°C (1.5µm) 左右達到熔化之最佳狀態,獲得最低之電阻率 2.11×10-5 Ω.cm 及 6.95×10-5 Ω.cm。透過微結構之分析與探討,發現2.5µm銅粉製備之銀銅複合材料核心處之銅於250℃左右開始氧化,發現隨著溫度增加氧化程度也隨之變得嚴重,在350℃時膏体緻密性最好,當燒結溫度達到550℃時銅分子已幾乎全數氧化。1.5µm銅粉製備之銀銅複合材料在未有任何熱處理前就已經有氧化現象,隨著燒結溫度達到350℃,核心出之銅已全數氧化。高溫燒結部分,最低之電阻率9.93×10-7Ω.cm (2.5µm) 發生於氮氣氣氛之燒結。
In technology of manufacturing the electrically conductive paste, the electrically conductive metallic powder is the key. For the electrically conductive paste, in addition to gold and silver powder that is often applied as the electrically conductive powder, other metallic powder with lower price like copper, nickel, or aluminum powder play a secondary role. Among those metals, silver is applied most extensively. In recent years, since the price of the precious metals soars, the cost of the electrically conductive pastes raises as well. Therefore, it has become a trend to replace the electrical paste made of the precious metals by the low-cost electrically conductive metallic powder in the future.
This paper discussed one of the low-cost replaceable material, core-shell silver-copper composite material or core-shell copper-silver, study the influences of heat treatment on its sintering behavior and electrical properties.
The core-shell copper-silver powder to be discussed in this paper is prepared by using Gal Tiffany displacement reaction. The prepared powder is then make into pastes and sintering by different temperature and atmosphere. The sintered pastes then be analyzed in order to obtain its optimal sintering condition and lowest resistivity. This research divided into two main parts, which included low and high temperature sintering. For low temperature sintering, the temperature is set at range from 250℃ to 550℃ with interval 50℃. And for high temperature sintering, the studied temperature range is from 600℃ to 800℃ with interval of 100℃, in order to study the sintering behavior, microstructure, electrical properties, and thermal characteristic.
By experiment and analysis, the melting temperature of nanoscale silver particles is obtained to be around 150℃(2.5µm) and 118°C(1.5µm). The nanoscale silver melted and form a reticular to hold the copper particles. In low temperature sintering system, the optimal sintering temperature is dropped at 350℃ for 2.5µm AgCu and 250°C for 1.5µm AgCu, which gives the lowest resistivity of 2.11×10-5 Ω.cm (2.5µm) and 6.95×10-5 Ω.cm (1.5µm). By microstructure analysis, the core copper of 2.5µm AgCu is found out to start oxidize at around 250℃, and follow by the increased of temperature the oxidize become worse and worse. At around 350℃, the sintered paste appeared with best densification. When the sintering temperature reached 550℃, almost all the copper particles are oxidized. For 1.5µm AgCu, the core copper was fully oxidized at 350°C. In high temperature sintering system, the lowest resistivity is 9.93×10-7 Ω.cm, which sintered under nitrogen atmosphere.
1. 駱榮富教授,“燒結實驗”,材料科學與工程學系,逢甲大學.
2. C.R. Kuo , “Studies on Conductive Copper Paste with Low Curing Temperature”,2015.
3. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005) 1025.
4. M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, J. Am. Chem. Soc. 133 (2011) 1150.
5. Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15 (2003) 641.
6. A.P. O'Mullane, S.J. Ippolito, A.M. Bond, S.K. Bhargava, Electrochem. Commun. 12 (2010) 611.
7. P.VanýsekVanýsek “Electrochemical Series” in “Handbook of Handbook of Chemistry and Physics, 92nd edition”, CRC , 2011.
8. David R. Lidem “Handbook of Chemistry and Physics, 87th edition”,CRC,2006.
9. P. Atkins, “Physical Chemistry, 6th edition”, W.H. Freeman and Company, 1997.
10. Allen J. Bard, Roger Parsons, Joseph Jordan, “Standard Potentials in Aqueous Solvent”, Marcel Dekker, 1985.
11. J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, Y. Xia, Nano Lett. 5 (2005) 2058.
12. William M. Haynes, “Handbook of Chemistry and Physics, 93rd edition”,CRC,2012.
13. J.X. Fang H.J. You, K. Peng, Y. Yan, X.P. Song, B.J. Ding, “Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction”, Crystal Growth & Design vol:7, 2007, p.864-867.
14. Y.W. Hu, S. Liu, S. Huang W. Pan, “Superhyfrophobicity and surface enhanced Raman scattering activity of dendritic silver layers’, Thin Solid Films vol:519, 2010.
15. W. Zhanga, F. Tana, W. Wanga, X. Qiub, X. Qiaoa, J. Chena,” Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol”, Journal of Hazardous Materials Vol: 217–218, 2012, Pages 36–42.
16. Y.W. Hu, S. Liu, S. Huang W. Pan, “Superhyfrophobicity and surface enhanced Raman scattering activity of dendritic silver layers’, Thin Solid Films vol:519, 2010.
17. J. Zhao, D.M. Zhang, X.J. Song, “Simple and eco-friendly preparation of silver films coated on copper surface by replacement reaction”, Applied Surface Science vol:258, 2012.
18. G.F. Bai, “Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection”, 2005.
19. Kim, J.C., K.H. Auh, and D.M. Martin, Multilevel particle packing model of ceramic agglomerates. Modelling and simulation of matererials of science and. engineering, 2000. 8: p. 159 to 168.
20. Bowen, P. and C. Carry, From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technology, 2002. 128: p. 248– 255.
21. Brinker, C.J., and G. W. Scherer, Sol-Gel Science, Chapter 11. 1990, New York: Academic Press.
22. Mayo, M.J., Processing of nanocrystalline ceramics from ultrafine particles. International Materials Review, 1996. 41(3): p. 85-115.
23. Guo-Quan Lu, Jesus N. Calata, and Thomas G. Lei, “Low-Temperature Sintering of Nanoscale Silver Paste for Power Chip Attachment”.
24. Bai, J.G., Ph.D. Dissertation: Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection, in Materials Science and Engineering. 2005, Virginia Polytechnic Institute and State University: Blacksburg.
25. O'neill Michael J and Watson Emmett S, Differential microcalorimeter,1966.
26. Molecular biology, vol.6. Moscow. 1975. pp. 7–33.
27. Wunderlich, B. (1990). Thermal Analysis. New York: Academic Press. pp. 137–140. ISBN 0-12-765605-7.
28. Dean, John A. (1995). The Analytical Chemistry Handbook. New York: McGraw Hill, Inc. pp. 15.1–15.5. ISBN 0-07-016197-6.
29. Pungor, Erno (1995). A Practical Guide to Instrumental Analysis. Florida: Boca Raton. pp. 181–191.
30. Skoog, Douglas A., F. James Holler and Timothy Nieman (1998). Principles of Instrumental Analysis (5 ed.). New York. pp. 805–808. ISBN 0-03-002078-6.
31. Coats, A. W.; Redfern, J. P. (1963). "Thermogravimetric Analysis: A Review". Analyst 88 (1053): 906–924. Bibcode:1963Ana....88..906C. doi:10.1039/AN9638800906.
32. Tikhonov, N. A.; Arkhangelsky, I. V.; Belyaev, S. S.; Matveev, A. T. (2009). "Carbonization of polymeric nonwoven materials". Thermochimica Acta 486: 66–70. doi:10.1016/j.tca.2008.12.020.
33. Joseph Goldstein (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer.
34. S. Dieter, Semiconductor Material and Device Characterization. 2nd ed. 1998.