簡易檢索 / 詳目顯示

研究生: 林翊翔
Lin, Yi-Shiang
論文名稱: 風浪模式透水效應之研究
A Study of Porous Effect on Wind Wave Model
指導教授: 蕭士俊
Hsiao, Shih-Chun
共同指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 風浪模式相位平均透水介質緩坡方程式波浪減衰
外文關鍵詞: Wind Wave Model, phase-average, porous media, Mild-Slope Equation, wave damping
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前利用波浪作用平衡方程式為基礎發展的風浪數值模式,幾乎沒有考慮波浪受透水效應的影響。為了使模式應用更加廣泛,本文以Hsu et al. (2005) 所提出的 WWM (Wind Wave Model) 風浪模式為基礎,並根據Lan et al. (2015) 所提出具有含透水效應影響之緩坡方程式理論,在動量平衡方程式 (action density equation) 中加入能量消散係數的方法,本文提出一個半經驗公式,求出透水效應能量消散係數及給予權重值,導入WWM風浪模式源項中,藉此改良WWM風浪模式,並用以描述風浪模式考慮透水效應的影響。本文模式能有效模擬波浪受任意厚度的透水介質的影響。本文利用三種透水底床及二種透水潛堤的實驗案例進行模式驗證,並探討透水效應能量消散係數計算之權重值建議大小,最後探討模式計算線性摩擦因子對波浪減衰的影響。本文同時在台灣西部四個淺水海域進行模擬考慮透水底床效應的影響分析,由模擬結果可以得知,當該區域水深小於10 m時,波浪確實會受到透水層的影響而減衰。本文在東沙島海域將海草視為透水介質,探討波浪受海草的影響所造成減衰的程度。

    The phase-averaged model which is based on wave action equation (WAE) is extended to include the porous effect on wave energy dissipation in this paper. The Wind Wave Model (WWM) proposed by Hsu et al. (2005) is a phase-averaged model. For improving the model, the wave dissipation coefficient of porous media is incorporated into the WWM model. The coefficient is obtained from the analysis mild-slope equation proposed by Lan et al. (2015) to add the porous effect in the WWM model. Three experiments of permeable bed and two experiments of submerged porous structure to validate the model skills. The weighting factor of wave dissipation coefficient of porous media was discussed. The other way to calculate the linear friction coefficient is proposed in this paper. Wave decay due to the linear friction coefficient was investigated. Four typical real sites were investigated by using the present model. Numerical results show that the wave will damp by the effect of porous bed in Taiwan west near shore (depths less 10 meters) of Taiwan. Using the present model to simulate the seagrass regarded as permeable medium near Dongsha island, and numerical results show that the wave will damp.

    中文摘要.............. I ABSTRACT.............. II 誌謝...............VIII 目錄..............IX 表目錄..............XI 圖目錄...............XIII 符號說明..............XV 第一章 緒論..............1 1-1研究動機與目的...........1 1-2 前人研究.............2 1-3 本文組織.............4 第二章 理論解析............5 2-1WWM風浪模式...........5 2-2WWM透水效應理論...........7 2-2-1 透水效應之緩坡方程式.........8 2-2-2 WWM之透水效應..........10 2-2-3 模式計算流程...........14 第三章 模式驗證............17 3-1 透水底床驗證...........18 3-1-1 Savage 實驗之比較..........18 3-1-2 Sawargi and Deguchi 實驗之比較.......20 3-1-3 Lara 等人實驗之比較.........22 3-2 透水潛式結構物驗證...........30 3-2-1 Rojanakamthorn 等人實驗之比較.......30 3-2-2 Cruz 等人實驗之比較..........38 第四章 透水效應參數探討..........41 4-1 模式psW建議...........41 4-1-1透水潛堤案例psW建議..........41 4-1-2 透水潛堤案例psW建議.........43 4-2 線性摩擦因子pf ............47 第五章 實例計算............50 5-1 台灣西部海域...........50 5-1-1 風場處理...........50 5-1-2 格網設定...........53 5-1-3 模式計算結果– 台灣西部海域.......55 5-2東沙島海域.............60 5-2-1模式輸入條件............60 5-2-2 格網設定...........62 5-2-3 模式計算結果– 東沙島海域.........63 第六章 結論與建議............70 6-1 結論.............70 6-2 建議.............71 參考文獻..............72 附錄..............80

    1.Barr, D.W. Turbulent flow through porous media. Ground Water 39, 646-650 (2001)
    2.Battjes, J. and Janssen, J. Energy loss and set-up due to breaking of random waves. Coastal Engineering Proceedings 1 (1978)
    3.Behera, B., Kaligatla, R.B., Sahoo, T. Wave trapping by porous barrier in the presence of step type bottom. Wave motion 57, 219-230 (2015)
    4.Biot, M.A Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range. The Journal of the Acoustical Society of America 28, 168-178 (1956)
    5.Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. II. Higher frequency range. The Journal of the Acoustical Society of America 28, 179-191 (1956)
    6.Booij, N., Ris, R., and Holthuijsen, L. A third‐generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research: Oceans (1978–2012) 104, 7667-7681 (1999a)
    7.Booij, N., Ris, R., and Holthuijsen, L.H. A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans (1978–2012) 104, 7649-7666 (1999b)
    8.Bretschneider, C.L. The generation and decay of wind waves in deep water. Transactions, American Geophysical Union 33, 381-389 (1952)
    9.Bretherton, F. and Garrett, C. Wavetrains in inhomogeneous moving media. In Proc. Roy. Soc. of London, pp. 529-554 (1968)
    10.Chang, H.-H., Interaction of water waves and submerged permeable offshore structures. Ph. D. thesis, The National Cheng Kung University, Taiwan (2004)
    11.Chen, H.-B., Tsai, C.-P., and Chiu, J.-R. Wave reflection from vertical breakwater with porous structure. Ocean engineering 33, 1705-1717 (2006)
    12.Cruz, E.C., Isobe, M., Watance, A. Boussinesq equations for wave transformation on porous beds. Coastal Engineering 30, 125-156 (1997)
    13.Dalrymple, R.A., Losada, M.A., and Martin, P. Reflection and transmission from porous structures under oblique wave attack. Journal of Fluid Mechanics 224, 625-644 (1991)
    14.Darcy, H., Darcy, H., and Darcy, H. Les fontaines publiques de la ville de Dijon. (1856)
    15.Eldeberky, Y. and Battjes, J. Parameterization of triad interactions in wave energy models. Proceedings of Coastal Dynamics Conference ’95, 140-148 (1995)
    16.Furukawa, K. Wave diffraction due to trenches and rubble. Report No.166, Department of Civil Engineering Report. Oregon State University, Corvallis, OR. (1991)
    17.Group, T.W. The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography 18, 1775-1810 (1988)
    18.Hsu, J., Jeng, D., and Tsai, C. Short‐crested wave‐induced soil response in a porous seabed of infinite thickness. International Journal for Numerical and Analytical Methods in Geomechanics 17, 553-576 (1993)
    19.Hsu, T.-W., et al. A parabolic equation for wave propagation over porous structures. Coastal Engineering 55, 1148-1158 (2008)
    20.Hsu, T.-W., and Wen C.-C. A study of using parabolic model to describe wave breaking and wide-angle wave incidence. Journal of the Chinese Institute of Engineers 23, 515-527 (2000)
    21.Hsu, T.-W., Ou, S.-H., and Liau, J.-M. Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Engineering 52, 177-195 (2005)
    22.Isobe, M. A parabolic equation model for transformation of irregular waves due to refraction, diffraction and breaking. Coastal Engineering in Japan 30, 33-47 (1987)
    23.Javier L. Lara, Inigo J. Losada, and Philip L.-F Liu Breaking waves over a mild gravel slope: Experimental and numerical analysis. Journal of geophysical research 111, (2006)
    24.Karunarathna, S.A.S.A. and Lin, P. Numerical simulation of wave damping over porous seabeds. Coastal Engineering 53, 845-855 (2006)
    25.Lan, Y.-J. and Lee, J.-F. On waves propagating over a submerged poro-elastic structure. Ocean Engineering 37, 705-717 (2010)
    26.Lan, Y.-J., Hsu, t.-W., and Lien H.-H. The effect of porous bottom media on wind wave model. Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, 453-459 (2015)
    27.Lee, J.-F. and Lan, Y.-J. On waves propagating over poro-elastic seabed. Ocean engineering 29, 931-946 (2002)
    28.Liu, P.L. Damping of water waves over porous bed. Journal of the Hydraulics Division 99, 2263-2271 (1973)
    29.Losada, I., Silva, R., and Losada, M. Interaction of non-breaking directional random waves with submerged breakwaters. Coastal Engineering 28, 249-266 (1996)
    30.Losada, I., Silva, R., and Losada, M. 3-D non-breaking regular wave interaction with submerged breakwaters. Coastal Engineering 28, 229-248 (1996)
    31.Madsen, O.S. Wave transmission through porous structures. Journal of the Waterways, Harbors and Coastal Engineering Division 100, 169-188 (1974)
    32.Méndez, F.J., Losada, I.J., and Losada, M.A. Wave-induced mean magnitudes in permeable submerged breakwaters. Journal of waterway, port, coastal, and ocean engineering 127, 7-15 (2001)
    33.Pierson, W. J., Neumann G. and Jams R. W. Practical method for observing and forecasting ocean waves by means of wave spectra and statics. U. S. Department of the Navy Hydrographic Office Bulletin 603, 284 (1955)
    34.Putnam, J. Loss of wave energy due to percolation in a permeable sea bottom. Transactions, American Geophysical Union 30, 349-356 (1949)
    35.Reid, R.O. and Kajiura, K. On the damping of gravity waves over a permeable sea bed. Transactions, American Geophysical Union 38, 662-666 (1957)
    36.Rojanakamthorn, S., Isobe, M., and Watanabe, A. A mathematical model of wave transformation over a submerged breakwater. Coastal Engineering in Japan 32, 209-234 (1989)
    37.Rojanakamthorn, S., Isobe, M., and Watanabe, A. Modeling of wave transformation on submerged breakwater. Coastal Engineering Proceedings 1 (1990)
    38.Savage, R.P. and Fairchild, J.C. Laboratory study of wave energy losses by bottom friction and percolation. DTIC Document (1953)
    39.Sawaragi, T. and Deguchi, I. Waves on permeable layers. Coastal Engineering Proceedings 1 (1992)
    40.Silva, R., Govaere, G., and Salles, P. Wave interaction with cylindrical porous piles. Ocean Engineering 30, 1719-1740 (2003)
    41.Silva, R., Losada, M., and Salles, P. Modelling linear wave transformation induced by dissipative structures—Random waves. Ocean engineering 33, 2174-2194 (2006)
    42.Silva, R., Mendoza, E., and Losada, M. Modelling linear wave transformation induced by dissipative structures—Regular waves. Ocean engineering 33, 2150-2173 (2006)
    43.Silva, R., Salles, P., and Palacio, A. Linear waves propagating over a rapidly varying finite porous bed. Coastal Engineering 44, 239-260 (2002)
    44.Sleath, J.F. Wave-induced pressures in beds of sand. Journal of the Hydraulics Division 96, 367-378 (1970)
    45.Sollitt, C.K. and Cross, R.H. Wave transmission through permeable breakwaters. Coastal Engineering Proceedings 1 (1972)
    46.Sverdrup, H. U. and Munk, W. H., Wind, Sea and swell, Theory of relation for forecasting. Department of the Navy Hydrographic Office Washington, D. C., Publiction 601, 44 (1947)
    47.Tolman, H.L. User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution (2009)
    48.Tsai, C. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering 22, 1-18 (1995)
    49.Tsai, C.-P., Chen, H.-B., and Jeng, D.-S. Wave attenuation over a rigid porous medium on a sandy seabed. Journal of engineering mechanics 135, 1295-1304 (2009)
    50.Tsai, C.-P., Chen, H.-B., and Lee, F.-C. Wave transformation over submerged permeable breakwater on porous bottom. Ocean engineering 33, 1623-1643 (2006)
    51.Tsai, C.-P. and Lee, T.-L. Standing wave induced pore pressures in a porous seabed. Ocean engineering 22, 505-517 (1995)
    52.U. S. Army Corps of engineers, Shore protection manual. Coastal Engineering Reasearch Center, U.S. Government Printing Office (1984)
    53.Willebrand, J. Energy transport in a nonlinear and inhomogeneous random graviety wave field. Journal of Fluid Mechanics 70, 113-126 (1975)
    54.Yamamoto, T., et al. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 87, 193-206 (1978)
    55.林朝福、洪溫德,孔隙底床上之波譜變形,第十六屆海洋工程演討論文集,第239-255頁 (1994)
    56.林朝福、何獻崇,孔隙底床波浪減衰之試驗研究,第十七屆海洋工程演討論文集,第407-423頁 (1995)
    57.蔡清標、陳鴻斌、李芳君,波浪通過斜坡孔隙底床上透水式潛堤之解析,第二十三屆海洋工程演討論文集,第257-264頁 (2001)
    58.蔡清標、陳鴻斌,斜坡孔隙彈性介質上波浪變形之研究,第二十四屆海洋工程演討論文集,第641-647頁 (2002)
    59.張人懿,演進型緩坡方程式應用於波浪大角度入射透水介質之研究,國立成功大學水利及海洋工程研究所碩士論文 (2004)
    60.許泰文、藍國華,東沙島海岸變遷數值分析及環境改善策略研究案,內政部營建署 (2007)
    61.林幸助、蕭淑娟,東沙海域大型藻類生物量與海草物候、生產力調查,海洋國家公園管理處委託研究報告 (2010)
    62.張人懿,利用含虛擬時間積分法之緩坡方程式模擬波浪通過透水結構物之變形,國立成功大學水利及海洋工程研究所博士論文 (2010)
    63.楊秉霖,WWMII 模式中不同碎波消散項堆週期之影響,國立成功大學水利及海洋工程研究所碩士論文 (2010)
    64.黃郁軒,島嶼周邊透水底床上之波浪運動,國立成功大學水利及海洋工程研究所碩士論文 (2011)
    65.張友齊,應用WWM風浪模式推估台灣環島波能之研究,國立成功大學水利及海洋工程研究所碩士論文 (2013)
    66.連弘憲,風浪模式透水底床效應之研究,國立成功大學水利及海洋工程研究所碩士論文 (2014)

    無法下載圖示 校內:2020-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE