| 研究生: |
賴亭瀚 Lai, Ting-Han |
|---|---|
| 論文名稱: |
電動巴士電池汰役與再利用規劃與效益分析 Planning and Benefit Analysis of Retirement and Reuse for EV Bus Battery |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 電動巴士 、電池汰役 、二次生命電池 、輔助服務 、混合整數線性規劃 、差分進化演算法 |
| 外文關鍵詞: | Electric bus, Retired battery, Second-life battery, Ancillary service, Mixed-Integer Linear Programming, Differential Evolution |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球推動電動交通與淨零碳排策略,電動巴士之導入已成為綠色城市運輸之重要推動方向。當車載電池汰役時尚具一定之可用剩餘容量,其潛力可進一步經重組利用成二次生命儲能電池系統,以用於參與場站支援或電力輔助服務市場,進而提升資源使用效率與整體效益。然而,如何妥善規劃電池汰役時機與汰役後之再利用策略,現今鮮有相關研究涉及討論,亦缺乏系統性之規劃策略。
本研究從電動巴士營運商角度出發,建立一套整合電動巴士最佳化排程、電池壽命規劃分配與再利用分析之規劃架構,進而求出最適化之電動巴士車載電池汰換時機。因車載電池汰換時機與電動車使用模式及充電模式有關,故本文模型採用雙層迴圈求解流程,內層透過混合整數線性規劃(Mixed-Integer Linear Programming, MILP)求解巴士充電排程;外層則運用差分進化演算法(Differential Evolution, DE)尋找最佳電池汰役門檻值,演算法中整合考量了電池重組後之可用容量估算模型,使演算法可兼顧重組電池於後續應用之潛力,提升汰換決策之實用性。本研究共設計五種應用策略,包含不進行重組、支援場站用電及三種輔助服務參與模式,並根據最佳之應用情境再進行不同之靈敏度分析。
模擬結果顯示,電池於最適化健康度門檻值汰役後,重組為二次生命儲能電池系統並投入具經濟誘因之輔助服務市場,可有效提升電池整體使用效益及增加營運商之收益。此外,應用模式不同亦將導致顯著之營運效益差異。分析結果顯示,電池汰役時機對重組後之容量、殘值及替換頻率具高度相關,顯示彈性的汰役策略結合應用情境評估,將成為未來電動巴士或電動車充電站業者營運規劃之重要策略。
With the global push toward electric mobility and net-zero carbon strategies, the deployment of electric buses has become a vital element in promoting sustainable urban transportation. When onboard batteries reach the end of their primary service life but still retain a usable level of residual capacity, they hold potential for repurposing into second-life energy storage systems. These systems can be further utilized in applications such as depot energy support or participation in ancillary service markets, thereby enhancing resource utilization efficiency and overall system value. However, the planning of optimal battery retirement timing and subsequent reuse strategies remains underexplored, with limited existing research offering systematic planning frameworks.
This study proposes an integrated planning framework from the perspective of electric bus fleet operators, combining day-ahead scheduling, battery retirement optimization, and second-life utilization analysis. The framework adopts a two-level iterative solution structure. The inner layer applies Mixed-Integer Linear Programming(MILP) to optimize the daily charging schedules based on operational constraints, while the outer layer utilizes a Differential Evolution(DE) algorithm to determine the optimal battery State of Health(SoH) retirement threshold. The algorithm incorporates a second-life battery capacity estimation model, allowing it to simultaneously account for the repurposed battery’s application potential, thereby enhancing the practicality of the retirement strategy. Five application strategies are considered in the analysis, including no repurposing, depot support, and three different ancillary service participation scenarios. Sensitivity analyses are subsequently performed based on the optimal application case.
Simulation results indicate that retiring batteries at an optimized SoH thresholds, repurposing them into second-life energy storage systems, and deploying them in ancillary service markets with economic incentives can significantly enhance overall battery utilization and increase operator revenues. Moreover, different application models yield varying operational benefits. The analysis reveals that battery retirement timing is strongly correlated with repurposed capacity residual value, and replacement frequency. These findings underscore that a flexible retirement strategy, integrated with scenario-specific application evaluation, will be a crucial consideration in future planning for electric bus operators or electric vehicle charging station providers.
[1] 經濟部能源署,能源轉型白皮書,110年12月。
[2] P. H. Hauke Engel, Giulia Siccardo, Second-life EV batteries: The newest value pool in energy storage, April 2019.
[3] J. Zhu, I. Mathews, D. Ren, W. Li, D. Cogswell, B. Xing, T. Sedlatschek, S. N. R. Kantareddy, M. Yi, T. Gao, Y. Xia, Q. Zhou, T. Wierzbicki, and M. Z. Bazant, “End-of-Life or Second-Life Options for Retired Electric Vehicle Batteries”, Cell Reports Physical Science, vol. 2, no. 8, pp. 2021.
[4] X. Gu, H. Bai, X. Cui, J. Zhu, W. Zhuang, Z. Li, X. Hu, and Z. Song, “Challenges and Opportunities for Second-Life Batteries: Key Technologies and Economy”, Renewable and Sustainable Energy Reviews, vol. 192, pp. 114191, 2024.
[5] Y. Wang, Y. Huang, J. Xu, and N. Barclay, “Optimal Recharging Scheduling for Urban Electric Buses: A Case Study in Davis”, Transportation Research Part E: Logistics and Transportation Review, vol. 100, pp. 115-132, 2017.
[6] M. Rogge, E. van der Hurk, A. Larsen, and D. U. Sauer, “Electric Bus Fleet Size and Mix Problem with Optimization of Charging Infrastructure”, Applied Energy, vol. 211, pp. 282-295, 2018.
[7] A. Jahic, M. Plenz, M. Eskander, and D. Schulz, “Route Scheduling for Centralized Electric Bus Depots”, IEEE Open Journal of Intelligent Transportation Systems, vol. 2, pp. 149-159, 2021.
[8] Z. Bao, J. Li, X. Bai, C. Xie, Z. Chen, M. Xu, W.-L. Shang, and H. Li, “An Optimal Charging Scheduling Model and Algorithm for Electric Buses”, Applied Energy, vol. 332, pp. 120512, 2023.
[9] B.-R. Ke, C.-Y. Chung, and Y.-C. Chen, “Minimizing the Costs of Constructing an All Plug-in Electric Bus Transportation System: A Case Study in Penghu”, Applied Energy, vol. 177, pp. 649-660, 2016.
[10] Z. Gao, Z. Lin, T. J. LaClair, C. Liu, J.-M. Li, A. K. Birky, and J. Ward, “Battery Capacity and Recharging Needs for Electric Buses in City Transit Service”, Energy, vol. 122, pp. 588-600, 2017.
[11] R.-C. Leou and J.-J. Hung, "Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations," Energies, vol. 10, no. 4, doi: 10.3390/en10040483.
[12] R. Xiong, Y. Zhang, J. Wang, H. He, S. Peng, and M. Pecht, “Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles”, IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4110-4121, 2019.
[13] L. Liu, A. Kotz, A. Salapaka, E. Miller, and W. F. Northrop, “Impact of Time-Varying Passenger Loading on Conventional and Electrified Transit Bus Energy Consumption”, Transportation Research Record, vol. 2673, no. 10, pp. 632-640, 2019.
[14] Y. Yang, J. Qiu, C. Zhang, J. Zhao, and G. Wang, “Flexible Integrated Network Planning Considering Echelon Utilization of Second Life of Used Electric Vehicle Batteries”, IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 263-276, 2022.
[15] M. H. S. M. Haram, M. T. Sarker, G. Ramasamy, and E. E. Ngu, “Second Life EV Batteries: Technical Evaluation, Design Framework, and Case Analysis”, IEEE Access, vol. 11, pp. 138799-138812, 2023.
[16] J. Kraenzl, T. T. Nguyen, and A. Jossen, “Investigating Stationary Storage Applications and their Impact on Battery Aging,” in Proceedings of 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1-9, 2019.
[17] T. Gao, L. Jiang, K. Liu, D. Xiong, Z. Lin, W. Bu, and Y. Chen, “Field Exploration and Analysis of Power Grid Side Battery Energy Storage System”, IEEE Access, vol. 9, pp. 63213-63218, 2021.
[18] M. Ortega-Vazquez, “Optimal Scheduling of Electric Vehicle Charging and Vehicle-to-Grid Services at Household Level Including Battery Degradation and Price Uncertainty”, IET Generation Transmission & Distribution, vol. 8, pp. 2014.
[19] 台灣電力股份有限公司,電力交易平台參考資料,輔助服務概論,2024年09月。
[20] 台灣電力股份有限公司,電力交易平台參考資料,日前輔助服務市場之交易商品項目規格,2024年09月。
[21] 台灣電力股份有限公司,電力交易平台管理規範及作業程序,全文(版次:TPC-MT-v04),2024年07月。
[22] A. Zanoletti, E. Carena, C. Ferrara, and E. Bontempi, “A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues”, Batteries, vol. 10, no. 1, pp. 2024.
[23] L. C. Casals, B. Amante García, and C. Canal, “Second Life Batteries Lifespan: Rest of Useful Life and Environmental Analysis”, Journal of Environmental Management, vol. 232, pp. 354-363, 2019.
[24] M. F. Börner, M. H. Frieges, B. Späth, K. Spütz, H. H. Heimes, D. U. Sauer, and W. Li, “Challenges of Second-Life Concepts for Retired Electric Vehicle Batteries”, Cell Reports Physical Science, vol. 3, no. 10, pp. 101095, 2022.
[25] M. Liu, W. Li, C. Wang, M. P. Polis, L. Y. Wang, and J. Li, “Reliability Evaluation of Large Scale Battery Energy Storage Systems”, IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2733-2743, 2017.
[26] Y. Liu and H. Liang, “A Data-Driven Approach for Electric Bus Energy Consumption Estimation”, IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 17027-17038, 2022.
[27] N. A. El-Taweel, A. Zidan, and H. E. Z. Farag, “Novel Electric Bus Energy Consumption Model Based on Probabilistic Synthetic Speed Profile Integrated With HVAC”, IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1517-1531, 2021.
[28] E. A. Moore, J. D. Russell, C. W. Babbitt, B. Tomaszewski, and S. S. Clark, “Spatial Modeling of a Second-Use Strategy for Electric Vehicle Batteries to Improve Disaster Resilience and Circular Economy”, Resources, Conservation and Recycling, vol. 160, pp. 104889, 2020.
[29] L. Scavuzzo, K. Aardal, A. Lodi, and N. Yorke-Smith, “Machine Learning Augmented Branch and Bound for Mixed Integer Linear Programming”, Mathematical Programming, Aug. 2024.
[30] J. C. B. Antônio José da Silva Neto, Haroldo Fraga de Campos Velho, Computational Intelligence Applied to Inverse Problems in Radiative Transfer, Dec. 2023.
[31] 大台南公車,公車時刻表,[Online]. Available:https://2384.tainan.gov.tw/newtnbusweb/othersInfoTimePrice.html?Lang=cht [Accessed 8 Jun, 2025].
[32] 臺南市交通局,大台南公車運量資訊,[Online]. Available:https://data.tainan.gov.tw/dataset/bus-ridership [Accessed 8 Jun, 2025].
[33] F. V. Technologies,Model T,Low-Entry City Bus.pdf
[34] 華德動能科技,RAC-700 Bus Catalog.pdf
[35] B. Zhou, Y. Wu, B. Zhou, R. Wang, W. Ke, S. Zhang, and J. Hao, “Real-world Performance of Battery Electric Buses and their Life-cycle Benefits with Respect to Energy Consumption and Carbon Dioxide Emissions”, Energy, vol. 96, pp. 603-613, 2016.
[36] S. Lieskoski, J. Tuuf, and M. Björklund-Sänkiaho, "Techno-Economic Analysis of the Business Potential of Second-Life Batteries in Ostrobothnia, Finland," Batteries, vol. 10, no. 1, doi: 10.3390/batteries10010036.
[37] 台灣電力股份有限公司,電力交易平台,日前輔助服務市場歷史結清價格與交易量,[Online]. Available:https://etp.taipower.com.tw/web/service_market/historical_settlement_trading [Accessed 8 Jun, 2025].
[38] 寧德時代新能源科技股份有限公司,CATL EnerOne 儲能產品手冊-壽命曲線圖.pdf
[39] K. Richa, C. W. Babbitt, G. Gaustad, and X. Wang, “A Future Perspective on Lithium-Ion Battery Waste Flows From Electric Vehicles”, Resources, Conservation and Recycling, vol. 83, pp. 63-76, 2014.
[40] 中華民國中央銀行全球資訊網,重貼現率,[Online]. Available:https://www.cbc.gov.tw/tw/lp-640-1-1-20.html [Accessed 8 Jun, 2025].
[41] 台灣電力股份有限公司,電動車充換電設施電價.pdf,2024年11月。
[42] ZENOBE,Electric bus battery degradation-what causes battery degradation and how to manage it,[Online]. Available:https://www.zenobe.com/insights-and-guides/electric-bus-battery-degradation-what-causes-battery-degradation-and-how-to-manage-it/ [Accessed 8 Jun, 2025].
校內:2027-07-08公開