簡易檢索 / 詳目顯示

研究生: 陳新霖
Chen, Shin-Lin
論文名稱: 降雨入滲和岩盤出滲引發土體崩塌之數值模擬
Numerical Simulations on the Landslide Motions of an Inclined Soil Layer Caused by Rain Infiltration and Bedrock Exfiltration
指導教授: 詹錢登
Jan, Chyan-deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 崩塌降雨入滲岩盤出滲快速滑動間歇性滑動
外文關鍵詞: Landslide movement, Rainfall infiltration, Bedrock exfiltration, Rapid sliding, Intermittent slipping
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 崩塌係指土體受重力作用沿坡面向下運動的現象,且會對人民的生命財產造成嚴重的威脅。土層內部孔隙水壓的變化是崩塌發生及其運動行為的重要影響因子。降雨入滲及岩盤出滲皆會改變土層內的孔隙水壓,進而致使土體發生滑動。本研究以牛頓第二運動定律及壓力擴散模式為基礎,考慮土層的膨脹角 以及摩擦係數μ可隨運動過程而改變,然後分別考慮在降雨入滲或岩盤出滲之條件下,分析無限邊坡土層的崩塌運動行為。結果顯示,超額孔隙水壓的產生與來源,會控制崩塌的運動類型。降雨入滲誘發土體運動的行為可分成靜止不動或快速滑動,而岩盤出滲誘發土體運動的行為則為靜止不動、快速滑動或間歇性滑動。土體靜止不動的原因為水從頂部入滲或底部出滲進入土塊內,最後的平衡水壓小於滑動臨界孔隙水壓;土體發生快速滑動的原因為水從頂部或底部進入土塊內,最後的平衡水壓大於滑動臨界孔隙水壓;而土體發生間歇性滑動的原因則為水從底部出滲進入土塊內,水直接作用在土體岩盤交界面,造成某一時間內的水壓大於滑動臨界孔隙水壓產生滑動,但其最後的平衡水壓小於滑動臨界孔隙水壓最後靜止不動。接著本研究將無限邊坡土層進行延伸,使土層從斜坡滑動一段距離後滑入一水平坡面,利用該模式探討降雨入滲和岩盤出滲對崩塌位移量的影響。其結果顯示當土體發生快速滑動時,水平滑行距離會與降雨強度或岩盤出滲強度成線性關係,但與進入土體內的降雨入滲量、岩盤出滲量無關。另一方面,當土體發生間歇性滑動時,其間歇性滑動位移量會與總岩盤出滲量和出滲強度成線性關係。本研究之研究成果可供未來做崩塌警戒時的參考。

    Landslides are the mass movement caused by gravity down the slope on hillsides, and can threaten people's lives and properties. Landslides and its movement mainly are controlled by change in internal the pore water pressure. Rain infiltration and bedrock exfiltration can change pore water pressure within the soil layer, thereby causing the soil slides. In this study, we developed a model that describe the velocity of block sliding down an inclined plane governed by Newton’s equation of motion and diffusion equation, considering the dilatancy angle and friction coefficient could vary with block displacement. Then we can use this model to analyze the soil layer motion along an infinite slope influenced by rainfall infiltration or bedrock exfiltration, respectively. Results show that the sources of excess pore pressure that control the types of landslide motion. Under rainfall infiltration conditions, the motion of landslide can be categorized into stationary and rapid sliding, and that into stationary, rapid sliding and intermittent slipping caused by bedrock exfiltration conditions. In addition, this study extended infinite slope theory that soil layers can slide a certain distance on a slope to a horizontal plane, further using this model to clarify the relationships between the displacement of block, rainfall infiltration and bedrock exfiltration. Results show that when the block occurs rapid sliding, horizontal sliding distance could be a linear relationship with respect to the intensities of rainfall infiltration and bedrock exfiltration. Also, when the block occurs intermittent slipping, the displacement of intermittent slipping will be a linear relationship with respect to the amount and intensity of bedrock exfiltration. The model develop in this study can provide useful information and thereby refined the prediction, prevention and mitigation of geological disasters.

    中文摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號說明 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 本文架構 2 第二章 文獻回顧 3 2.1 崩塌的定義及分類 3 2.2 降雨入滲引發之崩塌運動 5 2.3 岩盤出滲引發之崩塌運動 9 第三章 模式建立 13 3.1 基礎理論 13 3.2 運動控制方程式 13 3.3 擴散方程式 16 3.3.1入滲超額孔隙水壓 17 3.3.2滑動超額孔隙水壓 19 3.4 無因次化控制方程式 23 3.4.1 無因次化運動控制方程式 23 3.4.2 無因次化入滲超額孔隙水壓擴散方程式 24 3.4.3 無因次化滑動超額孔隙水壓擴散方程式 25 第四章 數值方法 26 4.1 柴比雪夫配置法 26 4.1.1 波譜法 26 4.1.2 柴比雪夫多項式 27 4.2 Runge-Kutta 4th order method 29 4.4 入滲超額孔隙水壓數值解 30 4.5 滑動超額孔隙水壓、滑行速度數值解 36 第五章 結果與討論 43 5.1 崩塌運動類型之模擬 43 5.1.1 臨界坡度 43 5.1.2 土體參數設定 43 5.1.3 滑動臨界孔隙水壓 45 5.1.4 降雨入滲引發之崩塌類型 46 5.1.5 岩盤出滲引發之崩塌類型 51 5.2 崩塌警戒模式建立 58 5.2.1 總降雨入滲量和總岩盤出滲量與平衡水壓之關係式 58 5.2.2 降雨入滲&岩盤出滲與快速滑動水平距離之關係式 60 5.2.3 岩盤出滲與底部最大入滲超額孔隙水壓之關係式 62 5.2.4 岩盤出滲與間歇性滑動位移量之關係式 63 第六章 結論與建議 66 6.1 結論 66 6.2 建議 67 參考文獻 68 附錄 72 A.配置點NC收斂性分析 72

    1. 行政院農委會水保局(2005), 水土保持手冊。
    2. 柯傑夫(2010), 鐵立庫崩塌地,北臺灣:以試驗判斷岩盤湧水扮演的角色, 國立臺灣大學土木工程研究所碩士論文
    3. 柯傑夫、卡艾瑋、萊威廉、林伯勳、冀樹勇 (2011), 岩盤出滲對於室內試驗模擬與鐵立庫崩塌形狀及地形演變之影響, 2011年中華水土保持學會年會及學術研討會, 中興大學
    4. 洪唯峰(2015), 地文參數改變對地下水出滲引發崩塌運動之敏感度分析, 國立成功大學水利及海洋工程研究所碩士論文
    5. 張永潔(2009), 運用在分解定義域之淺水方程式模型的切比雪夫排列法, 國立交通大學應用數學研究所碩士論文
    6. 張光宇(2010), 西方邊界流模擬:切比雪夫排列法與沉浸邊界法整合, 國立臺灣大學大氣科學研究所碩士論文
    7. 陳弘恩(2005), 降雨因發坡地淺崩塌模式之建立與探討, 國立交通大學土木工程研究所碩士論文
    8. 陳弘恩(2014), 考量降雨及逕流影響之坡地崩塌分析模擬, 國立交通大學土木工程研究所博士論文
    9. 陳冠翰(2011), 滲流誘發斜坡土體滑動特性之試驗, 國立中興大學水土保持學系所碩士論文
    10. 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利(2011), 臺灣常用山崩分類系統, 第十四屆大地工程學術研究討論會
    11. 鄭佳元(2009), 降雨誘發淺層崩塌之研究, 國立成功大學資源工程學系碩士論文
    12. 簡鍾凱(2014),應用柴比雪夫配置法求解岩盤出滲引發崩塌運動之研究, 國立成功大學水利及海洋工程研究所碩士論文
    13. Beven K., Germann P. (1982), Macropores and water flow in soils, Water Resour. Res.,18, 1311–1325
    14. Bolton, M. (1986), The strength and dilatancy of sands, Geotechnique, 36, 65–78.
    15. Brammer, D., McDonnell J. (1996), An evolving perceptual model of hillslope flow at the Miami catchment, Adv. Hillslope Processes, 1, 35–60.
    16. Bronnimann C., Stahli M., Schneiderm P., Seward L., Springman S. (2013), Bedrock exfiltration as a triggering mechanism for shallow landslides. Water Resour. Res , 2013 , VOL.49,5155–5167
    17. Cruden D. M., Varnes D. J. (1996), Landslide types and processes, in Landslides Investigation and Mitigation, edited by A. K. Turner and R. L. Schuster, Academy of Sci.,pp. 36–75, Natl. Washington, D. C.
    18. D’Odorico. P. (2005),Potential for landsliding: Dependence on hyetograph characteristics., JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,
    19. Genevois R., Ghirotti, M. (2005). The 1963 Vaiont landslide. G. Geol. Appl. 1, 41–52.
    20. Iverson R. M. (2000). Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897– 1910.
    21. Iverson R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure feedback, JOURNAL OF GEOPHYSICAL RESEARCH., 110
    22. Lehmann P., Hinz C. (2007), Rainfall threshold for hillslope outflow: an emergent property of flow pathway connectivity. Hydrology and Earth System Sciences Discussions, Cpernicus Publications, 2007, 11(2) pp.1047-1063
    23. Liran Goren, Einat Aharonov (2007), Long runout landslides The role of frictional heating and hydraulic diffusivity, GEOPHYSICAL RESEARCH LETTERS., VOL. 34, L07301, doi:10.1029/2006GL028895, 2007
    24. Onda, Y., Tsujimura M., Tabuchi H. (2004), The role of subsurface water flow paths on hillslope hydrological processes, landslides and landform development in steep mountains of Japan, Hydrol. Processes, 18
    25. Pradel D., Raad G. (1993), “Effect of permeability on surficial stability of homogeneous slopes,” J. Geotech. Eng., 119: 315-332.
    26. Rice J. (2006), Heating and weakening of faults during earthquake slip. Journal of Geophysical Research, VOL. 111, B05311, doi:10.1029/2005JB004006, 2006
    27. Schaeffer D. G., Iverson R. M. (2008), Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback., SIAM J. APPL. MATH., VOL 69, No. 3, pp. 769-786
    28. Tan S. B., Lim T. L., S. Tan S. L., Yang K. S. (1987), “Landslide problems and their control in Singapore,” In: 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, 1-25, 1-36.
    29. Tromp-van Meerveld I., Weiler M. (2008), Hillslope dynamics modeled with increasing complexity, Journal of Hydrology, 361, 24– 40
    30. Tsai T. L., Yang J. C. (2006), Modeling of rainfall‐triggered shallow landslide, Environ. Geol., 50(4), 525–534.
    31. Varnes D. J. (1978), Slope movement types and processes. Transportation Research Board Special Report.
    32. Wang, G., Sassa K. (2003), Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content, Eng. Geol., 69, 109– 125.
    33. Wilson C. J., Dietrich W. E. (1987):The contribution of bedrock groundwater flow to storm runoff and high pore pressure development in hollows. IAHS Publication (165): 49-59

    無法下載圖示 校內:2021-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE