簡易檢索 / 詳目顯示

研究生: 卓佳嫺
Cho, Chia-Hsien
論文名稱: 摻雜超順磁性四氧化三鐵對有機太陽能電池影響之研究
Influence of Doping Superparamagnetic Fe3O4 Nanoparticles on Organic Solar Cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 超順磁性四氧化三鐵磁性奈米粒子相分離微結構有機自旋電子內系統跨越
外文關鍵詞: superparamagnetic OA-Fe3O4 MNPs, phase separation microstructure, organic spintronics, intersystem crossing (ISC)
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要研究目標為:摻雜四氧化三鐵磁性奈米粒子於有機太陽能電池特定薄膜結構中之效應。由於四氧化三鐵奈米粒子具有超順磁特性,且在標靶藥物治療及核磁共振等生醫領域方面有其特殊應用價值,因此期望藉由其所具備之磁特性與元件中所產生之光電流產生電磁交互作用以提升元件之光電轉換效率。
    在本實驗中,我們成功地以化學共沉澱法合成出親水性Fe3O4 MNPs與疏水性OA-Fe3O4 MNPs,兩種粒子之平均粒徑皆約為10 nm左右,具備奈米級材料所特有之超順磁特性並經過SQUID VSM之驗證。親水性和疏水性之粒子分別以不同重量百分濃度均勻地分散於PEDOT:PSS與P3HT:PCBM溶液之中,本實驗皆採用異質接面(BHJ)結構,以PEDOT:PSS:Fe3O4 MNPs與P3HT:PCBM:OA-Fe3O4 MNPs溶液分別做為元件之電洞傳輸層及主動層材料。
    實驗結果發現將0.5 wt%及1 wt%之OA-Fe3O4 MNPs摻雜入P3HT:PCBM之後,其分別對一般正向摻雜元件產生了>20%及>40%之效率提升。接著對摻雜不同wt% OA-Fe3O4 MNPs之主動層薄膜進行:FTIR、cryo-TEM、AFM、UV-Vis、PL及SAXS等材料分析,發現主動層薄膜之化學結構並不因為摻雜而改變,但局部表面形貌及相分離微結構則因為OA-Fe3O4 MNPs摻雜濃度提升而受到影響。在0.5 wt%及1 wt%摻雜濃度下之主動層薄膜,其光吸收能力明顯提升但再結合過程所放出之螢光強度卻受到抑制,此為摻雜元件效率提升之主因。而OA-Fe¬3O4 MNPs摻雜主動層之各項薄膜分析結果皆與元件特性之表現相呼應。
    在本研究中我們推論主動層光吸收能力提升之主因來自於0.5 wt%及1 wt%之OA-Fe¬3O4 MNPs摻雜,使得P3HT之結晶性提高且結晶之domain size增大;而PL強度降低則源自於PCBM大規模擴散入P3HT matrix並團聚。另外我們也提出一假想模型:自旋電子在有機太陽能電池元件之再結合過程中扮演重要角色,且可以藉由摻雜超順磁性之四氧化三鐵奈米粒子來催化內系統跨越(ISC)機制,使三重電荷轉移態之比例大於單重態,進而抑制單重電荷轉移態再結合回到基態之比例,螢光強度降低且光電流之損耗減少,元件之短路電流及光電轉換效率因而提升。

    The main purpose of our research focused on the effect of doping Fe3O4 magnetic nanoparticles (MNPs) into the assigned films of organic solar cells. Owing to the promising superparamagnetic characteristic and versatile applications in targeted therapy and MRI of Fe3O4 MNPs, we anticipate the photocurrent generated within the devices will induce electromagnetic interactions with dopants and raise the efficiency.
    In our experiments, we successfully synthesized the hydrophilic Fe3O4 MNPs and hydrophobic OA-Fe3O4 MNPs by chemical co-precipitation method. The average diameter of both kinds of the as-synthesized particles is around 10 nm that possess superparamagnetism confirmed by SQUID VSM. The hydrophilic and hydrophobic particles were dissolved into PEDOT:PSS and P3HT:PCBM solutions with different weight percentages used as hole transport layer and active layer in bulk heterojunction (BHJ) structure, respectively.
    The results exhibited PCE of devices which doped with 0.5wt% and 1wt% OA-Fe3O4 MNPs in P3HT:PCBM under conventional processing was raised by >20% and >40%, respectively. The doped active layers were further analyzed by FTIR, Cryo-TEM, AFM, UV-Vis, PL, and SAXS. From those measurements, we could figure out the chemical compositions of OA-Fe3O4 MNPs doped active layers were not changed with doping percentage but local surface morphology, particle dispersibility and microstructure were varied. Advanced light absorbability and suppressed PL intensity of 0.5wt% and 1wt% doped active layers were the main reasons why PCE was improved. The results of all the measurements were consistent with the devices performances.
    In this research, we figured out the enhanced light absorbability was attributed to the improved P3HT crystallinity and crystallite domain size from SAXS measurements. The suppressed PL intensity was ascribed to the large-scale diffusion of PCBM into P3HT matrix to form aggregates. Furthermore, we offer an inferential model to interpret the relationship between the energy band and spintronics of the used organic semiconductor material. We infer that “The intersystem crossing (ISC) mechanism between singlet (1CT) and triplet (3CT) charge transfer state can be catalyzed by doping OA-Fe3O4 MNPs into P3HT:PCBM. The altered ratio of 3CT/1CT by ISC will affect the recombination process of electron hole pairs and will further suppress the loss of photocurrent.”

    中文摘要 I ABSTRACT II Extended Abstract IV 誌謝 XIV 目錄 XV 圖目錄 XVIII 表目錄 XXI 第一章 緒論 1 1-1 前言 1 1-2太陽光譜 2 1-3有機薄膜太陽能電池結構 3 1-3-1 單層有機太陽能電池Single Layer Organic Solar Cell 3 1-3-2 雙層有機太陽能電池Bilayer Organic Solar Cell 4 1-3-3 塊材異質接面有機太陽能電池 Bulk Heterojunction (BHJ) Organic Solar Cell 4 1-3-4 堆疊型有機太陽能電池Tandem Organic Solar Cell 5 1-4 主動層材料 P3HT:PCBM 6 1-5 電子阻擋層材料 PEDOT:PSS 8 1-6 金屬氧化物材料 8 1-6-1 正尖晶石與反尖晶石結構 8 1-6-2 Fe3O4之晶體結構 9 1-7 研究動機 10 第二章 理論基礎 11 2-1太陽能電池工作原理 Working Principle 11 2-1-1 光吸收形成激子 Light Absorbance and Exciton Generation 11 2-1-2 激子擴散 Excition Diffusion 11 2-1-3 激子分離 Exciton Dissociation 12 2-1-4 電荷汲取 Charge Extraction 12 2-2 太陽能電池元件特性分析 J-V Characteristics 12 2-2-1 開路電壓 Open Circuit Voltage, Voc 13 2-2-2短路電流 Short Circuit Current, Isc 13 2-2-3填充因子 Fill Factor, FF 14 2-2-4 能量轉換效率 Power Conversion Efficiency, PCE 14 2-3 磁性材料之特性 14 2-3-1 鐵磁性 Ferromagnetism 15 2-3-2 亞鐵磁性 Ferrimagnetism 16 2-3-3 順磁性 Paramagnetism 16 2-3-4 反磁性物質 Diamagnetism 17 2-3-5 反鐵磁性 Anti-ferromagnetism 17 2-4 奈米級材料之特殊效應 18 2-4-1 奈米粒子之粒徑與磁性之關係 19 2-5有機自旋電子之發展 Organic Spintronics 20 2-5-1有機自旋電子之激發態:單重態(singlet, S)與三重態(triplet, T) 21 2-5-2 單重態與三重態之比例 22 2-5-3 單重態與三重態間之系統間跨越 Intersystem crossing, ISC 23 2-5-4 單重態與三重態在元件中之比例量測 23 2-6 奈米級四氧化三鐵磁性粒子之合成 24 2-6-1 以化學共沉澱法合成四氧化三鐵磁性奈米粒子 24 2-6-2 以油酸作為界面活性劑對Fe3O4 MNPs 進行表面改質 25 2-7 文獻回顧 26 2-7-1 磁性奈米結構可催化系統間跨越機制 26 2-7-2 自旋電子在有機太陽能電池元件之再結合過程所扮演之角色 28 2-7-3 實驗規劃 29 第三章 實驗步驟與儀器量測 31 3-1 實驗流程圖 31 3-2 粒子合成:以化學共沉澱法合成四氧化三鐵磁性奈米粒子 32 3-3溶液製備:將合成粒子摻雜入電洞傳輸層及主動層溶液中 33 3-4 元件製作:摻雜薄膜有機太陽能電池元件製作 34 3-4-1 ITO玻璃基板之黃光製程 34 3-4-2 元件製作 34 3-4-3 送測樣品之製作 36 3-5 儀器分析:摻雜薄膜特性量測 37 3-5-1 元件效率量測設備 37 3-5-2 動態光散射儀 Dynamic Light Scattering, DLS 37 3-5-3 功能性穿透式電子顯微鏡 Cryo-Transmission Electron Microscopy, Cryo-TEM 38 3-5-4 超導量子干涉原件震動磁量儀 Superconducting Quantum Interference Device Vibrating Sample Magnetometer, SQUID VSM 38 3-5-5 傅立葉轉換紅外線光譜儀Fourier Transform Infrared Spectrometry, FTIR 39 3-5-6 原子力顯微鏡 Atomic Force Microscopy, AFM 40 3-5-7 紫外光/可見光光譜儀 UV/Visible spectrophotometer, UV/Vis 41 3-5-8 光致螢光光譜儀 Photoluminescence, PL 41 3-5-9 小角度X光散射small-angle X-ray scattering, SAXS 42 第四章 實驗結果與討論 44 4-1 四氧化三鐵磁性奈米粒子之合成結果 44 4-1-1 親水性之四氧化三鐵磁性奈米粒子 Fe3O4 MNPs 44 4-1-1-1 親水性Fe3O4 MNPs之DLS分析 47 4-1-1-2 親水性Fe3O4 MNPs之TEM分析 47 4-1-2 疏水性之四氧化三鐵磁性奈米粒子 OA-Fe3O4 MNPs 48 4-1-2-1 疏水性OA-Fe3O4 MNPs之DLS分析 51 4-1-2-2 疏水性OA-Fe3O4 MNPs之TEM分析 51 4-1-3 疏水性OA-Fe3O4 MNPs之SQUID VSM分析 52 4-2 薄膜有機太陽能電池元件製作及元件特性 53 4-2-1 親水性Fe3O4 MNPs摻雜於PEDOT:PSS層中並製成元件 53 4-2-1-1 摻雜不同wt%之Fe3O4 MNPs於PEDOT:PSS中之元件特性 54 4-2-1-2 PEDOT:PSS:Fe3O4 MNPs元件效率量測時施以外加磁場 56 4-2-1-3 PEDOT:PSS:Fe3O4 MNPs元件製作過程中對特定層施以外加磁場 58 4-2-2 疏水性OA-Fe3O4 MNPs摻雜於主動層中並製成元件 61 4-2-2-1 摻雜不同wt%之OA-Fe3O4 MNPs於P3HT:PCBM中之元件特性 62 4-2-2-2 後退火對P3HT:PCBM:OA-Fe3O4 MNPs元件特性之影響 64 4-2-2-3 P3HT:PCBM:OA-Fe3O4 MNPs元件量測時施以外加磁場 66 4-2-3 摻雜元件之元件特性總結 67 4-3 P3HT:PCBM:OA-Fe3O4 MNPs主動層薄膜分析 68 4-3-1 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之FTIR分析 68 4-3-2 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之TEM分析 70 4-3-3 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之AFM分析 72 4-3-4 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之UV-Vis分析 74 4-3-5 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之PL分析 75 4-3-6 P3HT:PCBM:OA-Fe3O4 MNPs薄膜之SAXS分析 77 第五章 結論與未來規劃 81 5-1 結論 81 5-2 未來實驗規劃 82 參考文獻 83

    [1] V. Gupta, A. K. K. Kyaw,”Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells”, Scientific Report, 3, 1965 (2013)
    [2] NREL’s ”Best Research-Cell Efficiencies” Chart
    [3] P. W. Atkins, Kurzlehrbuch Physikalische Chemie (2001)
    [4] M. P. Thekackra,”The Solar Cell Constant and Solar Spectrum Measurement from aResearch Aircraft”, NASA Technical Report (1970)
    [5] A. K. Ghosh, T. Feng,”Merocyanine organic solar cells”, J. Appl. Phys., 49, 5982 (1978)
    [6] C. W. Tang,”Two‐layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183 (1986)
    [7] C. Y. Yang, A. J. Heeger,”Morphology of composites of semiconducting polymers mixed with C60”, Synthetic Metals, 83, 85 (1996)
    [8] R. Norwood, P. Gangopadhay,”Ultra-thin organic photovoltaics with increased efficiency”, SPIE Newsroom, (2012)
    [9] T. Ameri, G. Dennler,”Organic tandem solar cells: A review”, Energy Environ. Sci., 2, 363 (2009)
    [10] M. D. Irwin, D. B. Buchholz,”p-Type semiconducting nickel oxide as an efficiency enhancing anode interfacial layer in polymer bulk-heterojunction solar cells”, National Acad Sciences, 105 (8), 2783–2787 (2008)
    [11] 劉宏昌, ”微波水熱法合成奈米磁性粒子之研究”,中原大學化學系碩士論文 (2006)
    [12] E. Stratakis, E. Kymakis,”Nanoparticle-based plasmonic organic photovoltaic devices”, Materials Today, 16, 133 (2013)
    [13] 陳建淼,洪連輝,”磁性物質”,科技部高瞻計畫高瞻自然科學教學資源平台 (2009)
    [14] 杜怡君,張毓娟,”磁性基本特性及磁性材料應用”,國立台灣大學化學系
    [15] 賴炤銘,李錫隆,”奈米材料的特殊效應與應用”, THE CHINESE CHEM. SOC. TAIPEI, 61, 585 (2003)
    [16] 黃忠良,”磁性流體應用理論”,復漢出版社, 37-48 (1998)
    [17] A. Fert, P. Griinberg,”Layered magnetic structures: interlayer exchange coupling and giant magnetoresistan”, Journal of Magnetism and Magnetic Materials, 140, 1-8 (1995)
    [18] M. A. Baldo, M. E. Thompson,”he excitonic singlet-triplet ratio in a semiconducting organic thin film”, Phys. Rev., B 60, 14422 (1999).
    [19] M. Segal,”Frequency response and origin of the spin-1/2 photoluminescence-detected magnetic resonance in a p-conjugated polymer”, Physical Review, B 71, 245201 (2005)
    [20] G. Reimers, W. Knalafalla,”Production of magnetic fluids by peptization”,US Patent, (1974)
    [21] 楊伯文,”磁性奈米粒子與磁性流體之合成與性質研究”,國立台北科技大學有機高分子研究所碩士論文 (2009).
    [22] 陳人豪,”磁性奈米粒子製備及其於電磁波遮蔽之應用”,國立中央大學化學工程與材料工程研究所碩士論文 (2006).
    [23] R. M. Patil, P. B. Shete,”Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application”, RSC Adv., 4, 4515–4522 (2014).
    [24] A. E. Cohen,”Nanomagnetic Control of Intersystem Crossing”, J. Phys. Chem., A 113 (41), 11084–11092 (2009)
    [25] A. Rao, P. C. Y. Chow,”The role of spin in the kinetic control of recombination in organic photovoltaics”, Nature, 500,435–439 (2013)
    [26] M. K. Etherington, J. Wang,”Recombination pathways in polymer:fullerene photovoltaics observed through spin polarization measurements”, Appl. Phys. Lett., 104, 063304 (2014)
    [27] H. Lu, H. Song,”Preparation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) /Fe3O4 nanocomposite film and its thermoelectric performance”, Journal of Composite Materials, 1–9 (2013)
    [28] W. Zhang, Y. Xu,”Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells”, Solar Energy Materials & Solar Cells, 95, 2880–2885 (2011)
    [29] S. Foner,”Further improvements in vibrating sample magnetometer sensitivity”, Rev. Sci. Instrum., 46, 1425 (1975)
    [30] Y. Li, G. Yue,”Application of PEDOT:PSS in polymer heterojunction solar cells”, J. Phys. Chem., C 116 (34), 18057–18063 (2012)
    [31] V. B. Barbeta, R. F. Jardim,”Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids”, Journal of Applied Physics, 107, 073913 – 073913-7 (2010)
    [32] Y. Yao, E. Metwalli,”Nano- and Microstructures of Magnetic Field-Guided Maghemite Nanoparticles in Diblock Copolymer Films”, ACS Appl. Mater. Interfaces, 6, 5244−5254 (2014)
    [33] S. Cheong, Y. Kim,”Nonganic nanoparticle multilayers using photo-crosslinking layer-by-layer assembly and their applications in nonvolatile memory devices”, Nanoscale, 5, 12356–12364 (2013)
    [34] H. Zang, Z. Xu, and B. Hu,”Magneto-Optical Investigations on the Formation and Dissociation of Intermolecular Charge-Transfer Complexes at Donor-Acceptor Interfaces in Bulk-Heterojunction Organic Solar Cells”, J. Phys. Chem., B, 114, 5704–5709 (2010)
    [35] H. Zang, I. N. Ivanov, B. Hu,”Magnetic Studies of Photovoltaic Processes in Organic Solar Cells”, IEEE Journal, 16, 1801–1806 (2010)
    [36] K. Wang, H. Ren,”Solution-Processed Fe3O4 Magnetic Nanoparticle Thin Film Aligned by an External Magnetostatic Field as a Hole Extraction Layer for Polymer Solar Cells”, ACS Appl. Mater. Interfaces, 5, 10325−10330 (2013)
    [37] W. Zhang, Y. Xu,”Fe3O4 nanoparticles induced magnetic field effect on efficiency enhancement of P3HT:PCBM bulk heterojunction polymer solar cells”, Solar Energy Materials & Solar Cells, 95, 2880–2885 (2011)
    [38] R. M. Patil, P. B. Shete,”Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application”, RSC Adv., 4, 4515–4522 (2014)
    [39] A. Rao, P. C. Y. Chow,”The role of spin in the kinetic control of recombination in organic photovoltaics”, Nature, 500,435–439 (2013)
    [40] P. C. Y. Chow, S. Gelinas,”Quantitative Bimolecular Recombination in Organic Photovoltaics through Triplet Exciton Formation”, J. Am. Chem. Soc., 136, 3424−3429 (2014)
    [41] S. Clafton, D. M. Huang,”Femtosecond Dynamics of Excitons and Hole-Polarons in Composite P3HT/PCBM Nanoparticles”, J. Phys. Chem., B 117, 4626−4633 (2013)
    [42] H. Loslein , T. Ameri,”Transient Absorption Spectroscopy Studies on Polythiophene–Fullerene Bulk Heterojunction Organic Blend Films Sensitized with a Low-Bandgap Polymer”, Macromol. Rapid Commun., 34, 1090−1097 (2013)
    [43] M. Y. Chiu, U. S. Jeng,”Simultaneous Use of Small- and Wide-Angle X-ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells”, Adv. Mater., 20, 2573–2578 (2008)
    [44] S. W. Yeh, K. H. Wei,”CdS Nanoparticles Induce a Morphological Transformation of Poly(styrene-b-4-vinylpyridine) from Hexagonally Packed Cylinders to a Lamellar Structure”, Macromolecules, 38, 6559-6565 (2005)
    [45] Y. C. Huang, C. S. Tsao,”Small- and Wide-Angle X-ray Scattering Characterization of Bulk Heterojunction Polymer Solar Cells with Different Fullerene Derivatives”, J. Phys. Chem., C 116, 10238−10244 (2012)
    [46] S. Sun, T. Salim,”A new insight into controlling poly(3-hexylthiophene) nanofiber growth through a mixed-solvent approach for organic photovoltaics applications”, J. Mater. Chem., 21, 377–386 (2011)
    [47] A. J. Parnell, A. J. Cadby,”Nanoscale Phase Separation of P3HT PCBM Thick Films As Measured by Small-Angle X-ray Scattering”, Macromolecules, 44 (16), 6503–6508 (2011)
    [48] M.Y. Chiu, U. Jeng, ” Simultaneous Use of Small- and Wide-Angle X-ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells”, Adv. Mater., 20, 2573–2578 (2008)

    無法下載圖示 校內:2024-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE